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Field-theoretic approach to metastability in the contact process
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A ‘‘quantum’’ field-theoretic formulation of the dynamics of the contact process on a regular graph of degree
z is introduced. A perturbative calculation in powers of 1/z of the effective potential for the density of particles
f(t) and an instantonic fieldc(t) emerging from the formalism is performed. Corrections to the mean-field
distribution of densities of particles in the out-of-equilibrium stationary state are derived in powers of 1/z.
Results for typical~e.g., average density! and rare fluctuation~e.g. lifetime of the metastable state! properties
are in very good agreement with numerical simulations carried out onD-dimensional hypercubic (z52D) and
Cayley lattices.
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I. INTRODUCTION

A. Motivations

Recent years have seen an upsurge of interest for the
namical properties of out-of-equilibrium systems in statis
cal physics@1#. Systems of interacting elements are ubiq
tous in physics and other fields, e.g., biology, compu
science, economy, etc. Most of the time the dynamical ru
do not obey detailed balance or similar criteria which wou
ensure the existence of a well defined stationary distribu
at large times. In other cases, a Gibbs measure does exis
is out of reach on experimental time scales, and all phen
ena of interest, e.g., the occurrence of dynamical phase
sitions take place when the system is truly out of equil
rium. An example of such out-of-equilibrium phenomen
frequently encountered in condensed matter, in cellular
tomata or even in computationally motivated problems is
occurrence of metastable states, or regions in phase spa
which trapping may take place for a very long time befo
further evolution becomes possible.

The calculation of the temporal properties of these s
tems often turns out to be very hard, even when dynam
rules look like innocuously simple. Over the past deca
however, various models and problems have been succ
fully investigated, e.g., Refs.@2–6#. Among the analytical
methods used to tackle these systems, some rely on the
servation that the master equation for a system of class
degrees of freedom may be seen as a Schro¨dinger equation
~in imaginary time! where the quantum Hamiltonian encod
the evolution operator. Exact, e.g., Bethe ansatz@3# or ap-
proximate, e.g., variational or semiclassical techniques
veloped in the context of quantum field theory may be u
to understand the dynamical properties of the original sys
@7#. One important achievement made possible by this
proach once combined with renormalization group te
niques has been the calculation of decay exponents and
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identification of universality classes in reaction-diffusio
models@8,9#.

The range of this ‘‘quantum’’ procedure is however n
limited to the calculation of universal quantities. In th
work, we show how it can be combined with diagramma
techniques developed in the contexts of field theory and
statistical physics of disordered systems to quantitativ
characterize the metastable properties of a well-known
ample of out-of-equilibrium system, the so-called conta
process~CP! @10#. In spite of its technicalities, this approac
allows us to make predictions that can be successfully c
pared to numerical simulations. It is expected that it w
permit to investigate metastability@11,12#, or other proper-
ties of various dynamical models.

B. The contact process: Definition and phenomenology

We consider a regular graphG with vertex degreez and
size N ~number of vertices!. Each vertex~or node, or site!
may be empty or occupied by one particle. Hereafter,
focus on the continuous time version of CP where a part
is spontaneously annihilated with rate 1 independently fr
other sites, and an empty site becomes occupied with
l nocc/z where nocc is the number of its occupied neare
neighbors@10#.

The value of the parameterl strongly affects the behavio
of CP. For infinite size graphs, e.g., infinite hypercubic l
tices, there exists a critical valuelC of l such that@13# the
following hold.

~1! If l,lC , the number of particles~occupied sites!
quickly decreases towards zero. Later, the system rem
trapped in this empty configuration.

~2! If l.lC , the densityr of particles reaches a platea
valuer* ~l! independently on the initial density@14#.

~3! At criticality, that is, whenl5lC , the density even-
tually relaxes to zero with a slow algebraic decayr(t)
;t2a. This critical behavior falls into the directed percol
tion universality class@15–17#. Exponenta is equal to 1 in
dimensions larger thanDc54, and approximate expression
in powers ofDc2D in lower dimensions have been obtaine
©2004 The American Physical Society26-1
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C. DEROULERS AND R. MONASSON PHYSICAL REVIEW E69, 016126 ~2004!
FIG. 1. Profiles of the densityr of particles vs timet for the contact process over a complete graph ofN vertices, initially filled with
particles@r~0!51#. ~a!. Thermodynamic limit,N→`. From bottom to top: subcritical (l,lC51, the density exponentially relaxes towa
zero!, critical (l5lC , the density algebraically decays to zero asr(t);t21), and supercritical (l.lC , the density exponentially relaxe
to a finite value,r*5121/l! cases. The density obeys a deterministic evolution equation~36!, and no fluctuation is present.~b!. Finite size
lattice, withN5100 sites. CP is a stochastic process, and the density profiles vary from run to run~we show here one run for each value
l!. The density quickly relaxes to zero~subcritical regime! or a finite value~supercritical regime!. In the latter case, the system is trapp
in a metastable regime where the density fluctuates for a very long time around its plateau value~inset: notice the difference of time scale!,
till a large fluctuation drives the density to the zero value.
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through the use of renormalization group techniqu
@7–9,15–18#.

These behaviors are displayed in Fig. 1~a!. The exact
value of the critical parameterlC is unknown in any dimen-
sionD, but rigorous bounds and estimates have been der
@13~b!#.

For finite-size graphs, the empty configuration, referred
as vacuum in the following, is an absorbing state for
dynamics. Starting from any initial configuration, e.g., ful
occupied state, CP will eventually end up in the vacu
configuration after a finite timetvac . This forces the above
infinite-size picture to be smeared out by fluctuations in
case of large but finite lattices@11,13~b!,19#. lC locates a
cross-over between fast@ tvac(N,l,lC)5O(ln N)# and very
slow @ tvac(N,l.lC);expO(N)# relaxations towards the
vacuum configuration. In the latter regime, the plateau he
r* merely defines an average value around which the den
exhibits fluctuations until the system is driven to the vacu
through a very large fluctuation@Fig. 1~b!#. On time scales
1!t!tvac(N,l.lC), the system is trapped into a met
stable state@20#. A ~pseudo!equilibrium probability measure
for the density can be defined,

P~r,N!5exp@N p* ~r!1o~N!#. ~1!

Function p* , which depends onl and other parameters
e.g., the dimensionD for hypercubic lattices, describes ra
fluctuations from the average densityr* . Its maximal value
is zero forr5r* . Densitiesr distinct from the average on
are exponentially ~in N) unlikely to be reached, and
p* ~r!,0, see Fig. 2. In particular, the probability of a ve
large fluctuation annihilating all particles scales
exp@Np* (0)#, and thus,
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tvac~N!5exp@2Np* ~0!1o~N!#. ~2!

The calculation of the large deviation functionp* ~r! is the
main scope of this paper. For this purpose we use a p

FIG. 2. The large deviation functionp* for the density of par-
ticles in CP with parameterl52 for theD-dimensional hypercubic
lattice. TheD→` curve corresponds to the mean-field limit, an
coincides with the case of the complete graph overN→` sites.
Plots of the predicted value ofp* ~r! at the order 1/D for D
56, 3, and 2 are obtained with the expansion of Sec. IV. The n
convexity of the curve forD52 shows the inaccuracy of the trun
cation to first order of our 1/D expansion in this range of densitie
6-2
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FIELD-THEORETIC APPROACH TO METASTABILITY . . . PHYSICAL REVIEW E69, 016126 ~2004!
integral representation ofp* where particles are encode
into quantum hard-core bosons, or1

2 spins, and develop a
diagrammatic self-consistent evaluation of the path integ
which allows us to write a systematic expansion ofp* in
powers of 1/z ~Sec. II!. In the infinite connectivity limit (z
→`), this formalism reduces to the mean-field theory of C
analyzed in Sec. III. Finite connectivity corrections top* are
calculated in Sec. IV. As a by-product, we obtain an exp
sion for the critical parameterlC(z) in powers of 1/z. The
validity of our calculation, effectively carried out up to ord
1/z2 ~and 1/z for p* !, is confirmed by numerical simulation
performed onD-dimensional hypercubic (z52D) and Cay-
ley lattices.

II. FIELD-THEORETIC FRAMEWORK

A. Path-integral formulation of the evolution operator

We start by writing the master equation of CP using
quantum formalism, according to the familiar procedure
Felderhof, Doi, and successors@21,22#. For each sitei of the
graph we define a hard-core boson with associated state
tors u0& i ~empty! andu1& i ~occupied!, and creation and anni
hilation operatorsai

† andai that anticommute on a single sit
but commute on different sites:@ai ,ai

†#151, @ai
† ,aj

†#
5@ai ,aj

†#5@ai ,aj #50 ~alternately, we could use spins 1
with a mere rewriting of the equations!. To each occupation
numbersi50,1 of sitei is associated a vectorusi&. Then, to
each statesW of the graph@set (s1 ,s2 , . . . ,sN) of occupation
numbers of all the sites# corresponds@23# a basis vector of a
2N-dimensional vector space,usW&5us1& ^ us2& ^ •••^ usN&,
and, to the time-dependent probability distributionP(sW,t),
the state vectoruP(t)&5(sWP(sW,t)usW&. The master equation
for P(sW,t) is now equivalent to the evolution equation of th
state vector

d

dtU P~ t !&5ŴuP~ t !&, ~3!

where the evolution operatorŴ is the infinitesimal generato
of the transitions. For CP,Ŵ5Ŵann1lŴcre with

Ŵann5(
i

~12ai
†!ai ,

Ŵcre5
1

z (
i

(
j P i

@aj
†~11aj !21#ai

†ai , ~4!

wherej P i means that sitej is one of thez nearest neighbors
of site i.

To map the stochastic process onto a path integra
field-theoretic formulation@8,9,24#, we introduce @25,26#
continuously parametrized states suitable for hard-c
bosons@27#. On each site of the graph, the state bra and
are, respectively,

^f,uu5~12f!1/2^0u1f1/2exp~2 ı̂u!^1u,

uf,u&5~12f!1/2u0&1f1/2exp~ ı̂u!u1&, ~5!
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wherefP@0,1#, uP@0,2p#, and ı̂2521. These states satisf
the closure relation

1

pE0

1

dfE
0

2p

duuf,u&^f,uu51. ~6!

To allow a simplification of the expressions in the translati
table given below, we make use ofcª21

2 ln@f/~12f!#1ı̂u
instead ofu, and introduce the following notations:

^f,cu5~12f!1/2@^0u1exp~2c!^1u#,

uf,c&5~12f!21/2@~12f!u0&1f exp~c!u1&]. ~7!

For the whole graph, a state is the tensor product of the st
over all sites:ufW ,cW &5 ^ i 51

N uf i ,c i&. Making use of Trotter
formula @28# and of the closure identity~6!, we obtain a
path-integral expression for the matrix elements of the e
lution operator exp(T Ŵ) between times 0 andT @8,24#,

^fW T ,cW Tuexp~TŴ!ufW 0 ,cW 0&

5E
fW (0)5fW 0 ,cW (0)5cW 0

fW (T)5fW T ,cW (T)5cW TDfW ~ t ! DcW ~ t !exp~2S @$fW ,cW %#!,

~8!

where the action reads

2S @$fW ,cW %#52E
0

T

dtH (
i 51

N

f i~ t !
dc i~ t !

dt
2W̃„fW ~ t !,cW ~ t !…J ,

~9!

and the integral runs over all field configurationsfW (t),cW (t)
over the time intervaltP@0,T# matching the required bound
ary conditions at initial and final times.

FunctionW̃ encodes the action of the evolution opera
Ŵ on the states. Its expression is obtained by first writingŴ
in normal order form thanks to the~anti!commutation rela-
tions, then using the translation Table I, see Refs.@8,9,24#.
For CP, we obtainW̃5W̃ann1lW̃cre with

W̃ann~fW ,cW !5(
i 51

N

f i@exp~c i !21#,

TABLE I. Translation table from operators inŴ into Lagrang-

ian contribution toW̃. We have addedaa† in the left column
though this operator is not in normal order to show the consiste
of the translation rules with the anticommutation relation.

Operator inŴ Expression inW̃

1 1
a f exp~c!

a† ~12f!exp~2c!

a†a f
aa† 12f
6-3



th
nc

a

o

th

nd
on
E

il
ly
ti

o

ld
of

f
iu
ai
n
he
e

g

-

he

-

’s

ly

the

e

le

lting

C. DEROULERS AND R. MONASSON PHYSICAL REVIEW E69, 016126 ~2004!
W̃cre~fW ,cW !5
1

z (
i 51

N

f i(
j P i

~12f j !@exp~2c j !21#.

~10!

The previous quantum formalism allows us to express
expectation value of any observable of interest. For insta
we may start at timet50 from a random stateur0& with
exactlyN05r0 N occupied sites and project at the end on
state^rTu with exactlyNT5rT N occupied sites:

ur0&ª
1

~N0

N ! (
sW

^ i 51
N @~12si !u0&1si u1&],

^rTuª(
sW

^ i 51
N @~12si !^0u1si^1u#, ~11!

where the sums run over all statessW with N0 (NT) occupa-
tion numberssi equal to 1, and the remainingN2N0 (N
2NT) ones equal to 0. The probability that the density
particles equalsrT at timet5T given that is was equal tor0

at timet50 is thusP(rT ,Tur0,0)5^rTuexp(T Ŵ)ur0&. Using
the path-integral formalism developed in this section,
logarithmP of this probability reads

P~rT ,Tur0,0!5 lnF E DfW ~ t ! DcW ~ t !exp~2S @$fW ,cW %#!

3^rTufW ~T!,cW ~T!&^fW ~0!,cW ~0!ur0&G , ~12!

where the boundary conditions for the fields at initial a
final times are now free. Knowledge of the above functi
gives access to the large deviations function defined in
~1! through

p* ~r!5 lim
T→`

lim
N→`

1

N
P~r,Tur* ,0!. ~13!

Notice that, although there is no notion of energy nor Ham
tonian in CP, the form of its path-integral formulation close
looks like a classical mechanics Lagrangian, with a kine
energy term and an effective potential energy term.

Calculation of the path integral on the right-hand side
Eq. ~12! will be done through a perturbative expansion~in l!
of the effective potential for the average values of the fie
fW (t),cW (t), following an approach used in the context
classical statistical mechanics@29,30#. This expansion allows
us to calculate quantities of interest, e.g.,f* ~r!, lC , r* , . . . ,
in powers of 1/D. In the following, we will closely follow
the technique and notations of Ref.@30# which makes use o
this perturbation expansion scheme to calculate equilibr
properties of the Ising model in large dimensions. The m
difference~and complication! is that, here, fields depend o
time. An application of this approach to the study of t
dynamics of continuous spins models can be found in R
@31#.
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B. Diagrammatic expansion of the effective potential

1. Constrained fields and conjugated sources

Let f̄ i(t) and c̄ i(t) be two arbitrary functions dependin
on time t and sitei, with f̄ iP@0,1#, from which we define
x̄ i(t)ª@12f̄ i(t)#$exp@2c̄i(t)#21%. We choose as elemen
tary ~site-attached! operators12f̂ iª12ai

†ai and x̂ iªai
†(1

1ai)21 @32#, and impose the constraints

^12f̂ i~ t !&512f̄ i~ t !, ^x̂ i~ t !&5x̄ i~ t !, ~14!

where

^Â&5
^rTuexp~* t

Tdt8Ŵ! Â exp~*0
t dt8 Ŵ!ur0&

^rTuexp~*0
Tdt8Ŵ!ur0&

is the average value of operatorA at timet. This can be done
through the introduction of Lagrange multipliers~sources! in
the evolution operator:Ŵ is changed toŴ8(t)1W9(t)1 in
the definition of^Â& where

Ŵ8~ t !ªmŴann1lŴcre2(
i

@hi~ t !~12f̂ i !2gi~ t !x̂ i #,

W9~ t !ª(
i

$hi~ t !~12f̄ i~ t !!2gi~ t !x̄ i~ t !%. ~15!

Fields hi(t) and gi(t) are expected to be as regular as t
imposed order parametersf i(t) andx i(t), and are assumed
to be ~at least! once differentiable with continuous deriva
tives over the time intervaltP]0;T@ . However, to match
with the components of the final bra and initial ket, Dirac
d-singularities may be present att50 and t5T. Note the
introduction of a new parameterm in front of the annihilation
operator in the expression ofŴ8. This parameter will result
convenient for technical reasons only, and we will ultimate
be interested in calculating quantities form51. This biased
evolution operator allows us to express the logarithm of
probability that the final density equalsrT for a fixed set of
order parameters,

P@rT ,T;$f̄,x̄%ur0,0#5 ln^rTuŴ~T,0!ur0&1E
0

T

dtW9~ t !,

~16!

and our task will be to computeŴ(T,0)ªexp@*0
TdtŴ8(t)#.

Requiring that Eq.~16! be extremal with respect tof̄ i(t) and
x̄ i(t) in addition to the constraints above ensures thathi(t)
5gi(t)50 at the extremum ofP. Therefore, at the saddl
point,P in Eq. ~16! will coincide with P defined in Eq.~12!.

The effective potentialP can be expanded in a doub
power series inl, m,

P5 (
a,b>0

lambPa,b with Pa,b

ª

1

a!

1

b!
~]l!a~]m!bPul5m50 . ~17!

We calculate belowP0,0, that is, the effective potential in
the absence of any evolution process albeit the one resu
6-4
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from the kinetic constraint over the order parameters,
then expose how to obtain higher orders ina,b through a
systematic diagrammatic expansion. A nice feature of
expansion scheme is that, at any given ordera in l, we are
able to resum the whole series in powers ofm and, thus, to
express our result as a unique power series,

P5 (
a>0

laPa~m! with Paª(
b>0

mbPa,b , ~18!

and setm51 in the above expression.

2. Calculation ofΠ0,0

We setl50. Ŵ8 decouples into a tensor product over t
sites. The latter remain however coupled by the constra
that the brâ rTu and the ketur0& correspond to configura
tions including exactlyNT5rTN andN05r0N particles, re-
spectively. We thus introduce two further Lagrange multip
ers, nT and n0, to select the initial and final densities o
particles. We replacêrTu and ur0& in Eq. ~16! with, respec-
tively, ^nT ,rTuª^Ouexp@nT(i(rT2ai

†ai)# and un0 ,r0&
ª( N0

N )21 exp@n0(i(ai
†ai2r0)#uO&, where uO&5(u0&1u1&) ^ N

is the sum of all possible configurations. Note thatun0 ,r0& is
normalized so as to represent a probability distribution. O
sites are decoupled,P may be expressed as a sum of si
dependent effective potentials, each depending uponf̄ i(t),
x̄ i(t), hi(t), gi(t), nT , andn0. We will eventually optimize
the resultingP over nT and n0 to ensure that the final an
initial densities are the requested ones.

We sendm to zero to makeŴ8 diagonal in the basis
(u0&,u1&). This allows us to compute exactly the evolutio
operatorŴ(t2 ,t1)ªexp@*t1

t2Ŵ8(t)dt#, and then any average o

operators or correlation function~CF!, e.g., ^ai(t2)ai
†(t1)&

ª^nT ,rTuŴ(T,t2)aiŴ(t2 ,t1)ai
†Ŵ(t1,0)un0 ,r0&. Evaluat-

ing ^(12f̂ i)(t)& and^x̂ i&, and imposing constraints~14!, we
find back the rules listed in Table I with overbarred fiel
@33#. The expressions for the sourceshi(t) andgi(t) are then
@34#, for times 0,t,T,

hi~ t !5
d

dt
c̄ i~ t !1~ec̄ i (t)21!

d

dt
ln@12f̄ i~ t !#,

gi~ t !52ec̄ i (t)
d

dt
ln@12f̄ i~ t !#, ~19!

from which we obtain hi(t)@12f̄ i(t)#2gi(t)x̄ i(t)5@1
2f̄ i(t)#d/dtc̄ i(t). In other words, the term inW9 of Eq.
~16! gives back, aside boundary terms involving initial a
final values, the ‘‘kinetic’’ term of the actionS ~9!.

It appears that constraints~14! at timest50 andt5T can
be imposed by nonsingular sourceshi(t) and gi(t) only if
the required state vectors^f̄ i(T),c̄ i(T)u and uf̄ i(0),c̄ i(0)&
are parallel to the initial brânT ,rTu and ketun0 ,r0&, respec-
tively. To bypass this constraint, we introduce a singular te
hi ,0d(t20)1hi ,Td(t2T) in the sourcehi(t)—it is sufficient
to modify hi(t) only and letgi(t) be regular, and we hav
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also verified that singularities inhi(t) and gi(t) at timest

P]0,T@ are absent unlessf̄ i(t) or c̄ i(t) are discontinuous,
and that a discontinuity of the order parameters is not fav
able in terms of action and can be discarded. Optimization
P0,0 with respect tohi ,0 andhi ,T yields

hi ,05c̄ i~0!1 lnF f̄ i~0!

12f̄ i~0!
G2n0 , hi ,T5nT2c̄ i~T!,

~20!

and allows one to fulfill constraints~14! at initial and final
times.

Gathering all contributions toP0,0 and using Stirling’s
formula, we find after some algebra

P0,05(
i

F E
0

T

dtc̄ i~ t !
df̄ i~ t !

dt
1nT@rT2f̄ i~T!#

2n0@r02f̄ i~0!#2f̄ i~0!ln f̄ i~0!2@12f̄ i~0!#

3 ln@12f̄ i~0!#G1N@r0ln r01~12r0!ln~12r0!#.

~21!

Notice that the sum of the last two terms inf̄ i(0) in Eq.~21!
is equal to the entropy ofN noninteracting particles at den
sity f̄ i(0).

3. Perturbative expansions in powers ofl and µ

For the rest of this section, we call average of an opera
Â, and denote bŷ Â&, the ratio ^nT ,rTuÂŴ(T,0)un0 ,r0&
over ^nT ,rTuŴ(T,0)un0 ,r0&. Let us introduce the operator
Ŝ152*0

TdtŴann and Ŝ252*0
TdtŴcre. These are directly

related toP through the relations]mP5^2Ŝ1& and ]lP

5^2Ŝ2&, valid for anyl andm. The average values of th
operators Ŝ1 and Ŝ2 are ^Ŝ1&52*0

Tdt( if̄ i(t)„exp@c̄i(t)#

21… ~for all l, m! and ^Ŝ2&l5052*0
Tdt( if̄ i(t)( j P i x̄ j (t)/z

~only for l50!, respectively, and give the beginning of th
expansion ofP. The sequel is obtained by iterative applic
tion of the following identities true for any~differentiable!
operatorÂ:

]m^Â&5^]mÂ&1^ÂÛ&, ]l^Â&5^]lÂ&1^ÂV̂& ~22!

with

Û52Ŝ11^Ŝ1&1E
0

T

dt(
i

@]mhi~ t !$f̂ i2f̄ i~ t !%

1]mgi~ t !$x̂ i2x̄ i~ t !%#, ~23!

V̂52Ŝ21^Ŝ2&1E
0

T

dt(
i

@]lhi~ t !$f̂ i2f̄ i~ t !%

1]lgi~ t !$x̂ i2x̄ i~ t !%#. ~24!
6-5
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Though sites are coupled byV̂ throughŜ2, successive appli-
cations of operatorsÛ,V̂ permit to evaluate the~derivatives
of! CFs required to compute the expansion in powers om
and l at l50 where these CFs are factorized over sit
Notice that Û, V̂, and their derivatives with respect tom
and l that will appear in higher orders of perturbatio
involve the derivatives of the fieldsh and g. These can
be expressed in a convenient way from the identitieshi(t)
52]f̄ i (t)

P, gi(t)52]x̄ i (t)
P, hi ,T52]f̄ i (T)P and hi ,05

2]f̄ i (0)P. In particular, ]lhi ,T5]f̄ i (T)^Ŝ2&50 and ]lhi ,0

5]f̄ i (0)^Ŝ2&50, allowing us to remove all terms involvin

d ’s in hi in the expressions ofÛ and V̂. Also, ]lhi(t)
5]f̄ i (t)

^Ŝ2& and ]lgi(t)5]x̄ i (t)
^Ŝ2&, so that the operatorV̂

writes in a convenient form whenl vanishes: V̂l50

5*0
Tdt( i( j P if̃ i(t)x̃ j (t)/z, where f̃ i(t)5f̂ i2f̄ i(t)1 and

x̃ i(t)5x̂ i2x̄ i(t)1 express the deviations of the elementa
operators with respect to their average values:^f̃ i(t)&
5^x̃ i(t)&50 for all l,m. Finally, let us give some usefu
properties ofÛ and V̂.

~1! ^Û&5^V̂&50 ~and if we write these operators in
natural way as sums over the graph sites, each summ

^Û i& and ^V̂i& also vanishes!.
~2! ^Ûf̃ i(t)&5^V̂f̃ i(t)&5^Ûx̃ i(t)&5^V̂x̃ i(t)&50.
~3! Any CF of the type^Â1Â2•••ÂkÛ& vanishes if the

time attached to theÛ operator is smaller or larger than a
other times attached to theAl operators. Indeed, a direc
evaluation of^nT ,rTuÛ and Ûun0 ,r0& after explicitly ex-
pressingÛ in a similar way as we did forV̂l50 shows that
both vectors vanish.

We now apply the above scheme to the calculation ofP.

III. MEAN-FIELD THEORY „z\` LIMIT …

In this section, we first expose the analysis of the con
process on a complete graph. We then explain how
mean-field theory can be found back through the formal
developed in Sec. II.

A. A simple derivation of mean-field theory: The contact
process on the complete graph

Consider CP on the complete graph withN sites. As any
two sites are adjacent, an exact account of the dynamics
be obtained from tracking the probabilitypn(t) that n sites
are occupied at timet @35#. The master equation for thes
probabilities reads,

dpn

dt
~ t !5~n11!pn11~ t !1

l

N21
~n21!~N2n11!pn21~ t !

2S n1
l

N21
n~N2n! D pn~ t !, ~25!

with the conventionsp21(t)5pN11(t)50. In the largeN
limit, we expect from the considerations of Sec. I B the f
lowing scaling behavior for the probabilities@36#:
01612
.

nd

ct
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an

pn~ t !5exp@NpMF~n/N,t !#. ~26!

Inserting this scaling ansatz into the master equation~25!
yields the equation of motion for the large deviation functi
pMF(r,t) of the densityr of particles,

] tpMF~r,t !5W̃MF@r,]rpMF~r,t !#, ~27!

where

W̃MF@f,c#ªf@exp~c!21#1lf~12f!@exp~2c!21#.
~28!

The very strong analogy between the above definition
the expression for the matrix elements of the creation
annihilation operators in Eq.~10! will be explained in the
following section.

After a transient depending on the initial condition, e.
all sites are initially occupied and all densities butr51 have
zero probability, the large deviation functionpMF relaxes to
its stationary value,

pMF* ~r!52
1

l
1~12r!@12 ln l2 ln~12r!#. ~29!

It is maximal and equal to zero inr5r* . The value inr50
gives immediate access to the average lifetime of the m
stable state with densityr* , that is, the time it takes to the
system to reach the empty state, see Eq.~2!,

tvac~l,N!;expFNS 1

l
1 ln l21D G . ~30!

This value may be successfully compared to the results
Fig. 4 in Ref. @35#. A direct numerical simulation of the
evolution of thepn(t) with N up to '100 has allowed us to
check the validity of scaling hypothesis~26! and to obtain a
perfect agreement of the experimental distribution with E
~29!.

B. Mean-field theory from the ‘‘quantum’’ formalism

The first termP0,0 in the expansion of the effective po
tential P in powers ofl andm is given by Eq.~21!. Then
P1,052^Ŝ1&0,0 and P0,152^Ŝ2&0,0, the expressions o
which in terms off̄ and x̄ are given above. These are su
ficient to establish the expressions ofP0(m) and P1(m),
due to the third property of Sec. II B 3. Indeed, we have
following.

~1! Pa,050 for all a>2. Proof: ]mP52^Ŝ1Û& since
]mŜ150. The expression of̂Ŝ1Û& involves a double sum
over the sites, say,i , j , of terms of the form^Âi Û j&. Any
such CF vanishes for allm as stated in Sec. II B 3.

~2! Pa,150 for all a>1. Proof: ]m]lP52^Ŝ2Û& which,
for l50 and allm, reduces to a triple sum over the site
say, i, j P i and k, of CF of the type^Âi B̂j Ûk& where the
times attached toÂi andB̂j coincide. Again, these CF vanis
due to the presence of theÛ operator.
6-6
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As a result, settingm51, we obtain

P@rT ,T;$f,x%ur0,0#

5(
i

FnT@rT2f̄ i~T!#2n0@r02f̄ i~0!#

2f̄ i~0!ln@f̄ i~0!#2@12f̄ i~0!# ln@12f̄ i~0!#

1r0ln r01~12r0!ln~12r0!1E
0

T

dtS c̄ i~ t !
df̄ i

dt
~ t !

1f̄ i~ t !$exp@c̄ i~ t !#21%1
l

z
f̄ i~ t !(

j P i
x̄ j~ t !D G

1O~l2!. ~31!

For l50 ~for m50!, we are able to compute action~31!
directly, without using such a perturbative expansion as
~17!, since the matrix ofŴ8 is upper~lower! triangular in the
basis~u0&,u1&!. However, when bothl andm are nonzero, we
do not know how to proceed without the perturbative exp
sion.

In search for a translationally invariant, i.e., sit
independent evolution, we choose all quantities to be
independent and remove site indices. We also drop the
over the fields to simplify notations. Equation~31! then be-
comespMF5P/N with

pMF@rT ,T;$f,x%ur0,0#

52f~0!ln@f~0!#2@12f~0!# ln@12f~0!#1r0 ln r0

1~12r0!ln~12r0!1nT@rT2f~T!#2n0@r02f~0!#

1E
0

T

dtS c~ t !
df

dt
~ t !1W̃MF@f~ t !,c~ t !# D , ~32!

where W̃MF is defined in Eq.~28!. The above expressio
suffices to the study the mean-field~MF! case, i.e., when the
site connectivityz goes to infinity. This may happen for larg
complete graphs, where each site is connected to all o
sites (z5N21), or in theD→` limit of a D-dimensional
regular lattice (z52D). As shown in Sec. IV A, higher-orde
terms in thel expansion giveO(1/z) additive contributions
to P ~within a site-independent ansatz!, and vanish in thez
→` limit. Therefore,pMF is the exact mean-field expressio
for the action. To obtain the~exponentially inN) dominant
trajectory of the order parametersf(t),c(t), we first ex-
tremize Eq.~32! with respect tonT ,n0, to get the expected
relationsf(T)5rT andf(0)5r0. Notice that, if the initial
state were a superposition of configurations with vario
densities, e.g.,*0

1dr0exp@Nq(r0)#ur0&, Eq. ~32! would include
an additive contributionq(r0); the most probable initial den
sity r0 would then be given by the solution of]rq(r0)
5c(0). Theresulting expression,

pMF5E
0

T

dtH c~ t !
df

dt
~ t !1W̃MF@f~ t !,c~ t !#J ~33!
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has then to be functionally extremized over the fieldsf(t)
andc(t). The equations of motion~EM! for the fields are the
Hamilton-Jacobi equations associated to Lagrangian~33!,

dc

dt
~ t !5]fW̃MF@f~ t !,c~ t !#,

df

dt
~ t !52]cW̃MF@f~ t !,c~ t !# ~34!

along with the already established initial and final con
tions: f(T)5rT andf(0)5r0.

The solution of the EM yields the logarithmNpMF of the
probability to go from a configuration with densityf~0! at
time 0 to another configuration with densityf(T) at timeT.
To solve these equations, we make use of the fact thatW̃MF is
a conserved quantity from Eq.~34!, which we denote byE.
Then, the densityf and the timet can be expressed as fun
tions of yªexp(c),

t5E
y(0)

y

dy8@~y82l!2~y821!214Ely8~y821!#21/2.

~35!

The action of the trajectory equals the large deviation fu
tion, pMF(r,T)5*y(0)

y(T)dy8ln(y8)]yf(y8)1TE. The shape of
the solutions of Eq.~34! depends on the sign ofc~0!. As
shown in Fig. 3, if we exclude solutions wheref(t) is al-
ways zero@37#, three cases have to be distinguished.

~1! If c~0!50, the solutions have an infinite lifetime.c(t)
remains zero at all times@38#, and the fieldf(t) obeys the
first-order ordinary differential equation

df

dt
~ t !52lf~ t !S f~ t !211

1

l D . ~36!

This equation coincides with the mean-field equation for
density r(t), straightforwardly obtained when neglectin
correlations between occupation numbers of neighbor
sites. At large times,f(t) tends to 0 orr*5121/l depend-
ing on whetherl is smaller or larger than the critical valu
lC51 as shown in Fig. 1~a!. Notice that the actionpMF
vanishes asc50.

~2! If c~0!,0, the solutions have a finite lifetime an
f(t)→1 while c(t)→2` @see Figs. 3~a,b!#.

~3! If c~0!.0, the sign of the conserved quantityE mat-
ters. If E.0 ~which is necessary ifl,1!, the lifetime is
finite @see Fig. 3~c!#. If E,0, the solutions are periodic@see
Fig. 3~d!#. If E50, the situation is the natural intermedia
between the two cases. In all cases, the lifetime~or the pe-
riod! T(E) increases asuEu diminishes.

Nonzero fieldsc select instantonic solutions allowing th
system to escape the typical behavior described by thec50
solution. These solutions have an extensive action, and
therefore exponentially suppressed when the system siz
creases. However, they are the solutions giving rise to la
deviations of the density for a finite volume@Fig. 1~b!#. The
most probable fluctuations correspond to long times so
tions, i.e.,E→0. In this case,T(E) diverges like logE, and
6-7
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FIG. 3. Solutions of the mean-field equations of motion~34! for l52 ~r*51/2! ~A and B!. For negativec~0! (521027 here!, the
solutions have a finite lifetime. After quickly reaching the most probable value of the density of particles,r* , f(t) stays for a long time in
the neighborhood ofr* but finally reaches unity, whilec(t)→2`. The actionpMF tends to a negative finite value; the main contributi
to it comes from the final jump off from r* to 1. ~C! For positivec~0! (51028 here! andE.0, the lifetime is finite. After quickly reaching
r* , f(t) stays for a long time in its neighborhood but finally transits to the neighborhood of 0 where it stays again for a long time
c(t) transits to lnl and stays close to it. Finallyc(t)→1` while f(t)→0. pMF tends to a negative finite value, the main contribution
which is accumulated during the transit.~D! For positivec~0!.0 (51028 here! andE,0, the solution is periodic.f(t) andc(t) oscillate
between two values inside the@0,r* # and@0,ln~l!# intervals, respectively, and the action diverges to2` by hops.~E! Phase portrait with all
types of solutions~oriented according to the time evolution!. The phase space divides into four regions delimited by the solutions for w
E50 ~represented in thick lines!; in each region the sign ofE is indicated. The quasistationary state appears on this diagram as the cro
point ~c50,f5r* ! of two solutions withE50: it is stable along thef direction but instable along thec direction.
016126-8
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theTE term vanishes. Whenl.1, we have the simple iden
tity f(y)512y/l if 0<y<l, 0 if y>l. In particular, the
weight of the instantonic solution that goes fromf~0!5r* to
f~1`!5r coincides with the stationary large deviation fun
tion for the densitypMF* (r) defined in Eq.~29!.

The large deviation function can be obtained at any fin
time t too. To do so, we use expression~32! to express the
probability of going from the state with distributionp(r,t)
at time t to the one the state withp(r,t1dt) at time t
1dt. Special care must be paid to discretizing the term
volving time derivations in a symmetric way betweent and
t1dt as requested for path integrals@28#. The resulting evo-
lution equation for the large deviation function coincid
with Eq. ~27! as expected.

C. Relationship with Martin-Siggia-Rose
and Janssen–de Dominicis formalisms

The above formalism is, to some extent, related to
treatment of Langevin equations by Martin, Siggia, and R
~MSR! @39# and Janssen and de Dominicis@40–42#. If x(t)
is a classical~scalar or vector! field, the Langevin equation

dx

dt
~ t !52V8„x~ t !…1h~ t ! ~37!

describes its evolution in the potentialV (V8 denotes]xV)
under the random Gaussian forceh. h is specified by its first
two moments:h(t)50, h(t)h(t8)52Td(t2t8), whereT is
the temperature and the overbars denote the noise ave
Let P(xT ,Tux0,0) be the probability thatx equalsxT at time
T conditioned to its initial value. This probability can b
expressed as a path integral through the introduction o
response variablex̂ conjugated tox @39–42#,

P~xT ,Tux0,0!5E
x(0)5x0

x(T)5xTDx~t!Dx̂~t!expF E
0

t

dtH i x̂~t!

3S dx

dt
~t!1V8„x~t!…D2Tx̂2~t!J G . ~38!

Functional optimization of Eq.~38! with respect tox,x̂ yields
the classical equations of motion,

dx~ t !

dt
52V8„x~ t !…2 i2Tx̂~ t !,

dx̂~ t !

dt
5 x̂~ t !V9„x~ t !…

~39!

from which we obtain thatdx/dt(t)22V8„x(t)…2 is a con-
stant of motion.

These EMs are formally identical to those derived for C
~34! in Sec. III (x playing the role off and x̂ that of
2 ic) when ucu!1, with the following choice of potentia
and temperature:

V8~f!5lf~f2f* !, 2T~f!5f„11l~12f!…. ~40!

Therefore, in the weakly fluctuating regime wherec is
small andf close to its most probable valuer* , the system
evolves in an effective potentialV with fluctuations that can
01612
e
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be described by a Langevin equation at temperatureT @43#.
This description breaks down as soon as we consider la
deviations, or transitions from the metastable to the em
state, as can be seen from the numerical comparison o
true solutions of Eq.~34! with the solutions of Eq.~39!.

Extending the validity of the Langevin equation approa
to the full domain off and c would require the use of a
MSR-like formalism@39–42#. Interestingly, MSR stated in
their original work that the knowledge of the physical fieldf
alone is not sufficient to compute all quantities of intere
beyond the Gaussian approximation, and that the introd
tion of a second operator~corresponding to ourc, or toa and
a†, whereasf corresponds toa†a) to express the respons
functions of the physical field was required.

IV. FINITE-DIMENSION THEORY „1Õz EXPANSION…

A. Analytical calculation

Calculation of the corrections to mean-field theory r
quires the knowledge of higher-order terms in the expans
of P in powers ofl andm. Strictly speaking, our expansio
is, after we resum them-expansion, an expansion in powe
of l, or, more precisely, ofl/z. It naturally gives access to
an expansion ofP in powers of 1/z as shown below.

1. The diagrammatic expansion

To show how this expansion works in practice, let us co
sider the first correction to Eq.~32!, 2 P2,05]l

2Pu0,05

2]l^Ŝ2&0,052^Ŝ2V̂&0,05^V̂2&0,0 since ]lŜ250 and ^Ŝ2V̂&
52^V̂2&. V̂0,0 involves a sum over couples of neighborin
sites that can be written as a sum over oriented links. T
term f̃ i x̃ j will be represented by a link going from sitei to
site j. Therefore^V̂2&0,0 writes as a sum over couples o
oriented links. Whenl50, sites decouple and terms where
site carries a single operatorf̃ or x̃ vanish~Sec. II B 3!. We
are thus left with terms where two parallel links loop ov
two neighboring sitesi , j on the lattice,

~41!

and terms with the same structure but links pointi
in opposite directions. Asl50, this four-point CF fac-
torizes into a product of two two-point CFs:

^f̃ i~ t !x̃ j~ t !f̃ i~ t8!x̃ j~ t8!&0,0

5^f̃ i~ t !f̃ i~ t8!&0,0̂ x̃ j~ t !x̃ j~ t8!&0,0.

Each of these CFs can be straightforwardly computed, e

^f̃ i(t)f̃ i(t8)&0,05f̄ i(t1)@12f̄ i(t2)# wheret15min(t,t8) and
t25max(t,t8). The final result reads
6-9
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~42!

The antiparallel two-site loop diagram may be evaluated in the same way. Notice that the final outcome does not depe
indicesi , j of the sites, provided these are neighbors on the lattice. We will therefore drop site indices in the following
we count the multiplicity of each diagram, equal toNz for both parallel and antiparallel two-sites loops. Finally, each diag
gets a factor 1/z2 coming from the (l/z)2 factor in Ŵcre. As a result, the net contribution will be of the order of 1/z, that is,
1/D on aD-dimensional hypercubic lattice.

We are now able to write the general expression of the 1/z expansion in a graphical way. For instance, for a hypercu
lattice of dimensionD ~and site connectivityz52D),

~43!
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Each undirected diagram in the above expansion repres
the sum of the correlation functions~like the one entering
P2,0 and evaluated above! that share the same support on t
graph but differ by the orientations of the links. There are,

link orientations for an undirected diagram with, links. The
coefficients in front of the diagrams take into account
power ofl/z ~equal to the number of links in the diagram!,
the inverse factorial from the Taylor formula, and a com
natorial factor. This combinatorial coefficient is the produ
of the multiplicity of the undirected diagram~number of
times it can be drawn on the lattice, divided by the latt
size N) and of the number of ways to associate a timet to
each link of the diagram when evaluating the CF@44#. As
one may infer from the first diagrams, there is only a fin
number of terms contributing to a given order in 1/z.

2. Summation of the µ-expansion and memory kernels

P being the logarithm of a generating function of th
fields, all the diagrams entering expansion~43! are con-
nected. Moreover, form50 all nonirreducible diagrams, i.e
which may be cut into two, or more, pieces by removal o
vertex vanish, as in the virial expansion@45# and possibly the
Ising model@30#. This statement does unfortunately not e
tend to nonzerom. To get them-expansion we make re
peated uses of the leftmost identity in Eq.~22!. As ]mÛ

5]mV̂50, this amounts to insertÛ operators~one for each
power ofm) in the CFs, yielding contributions of the form

DnªE
0

T

dt1E
0

T

dt2•••E
0

T

dtn12^f̃ i~ t1!

3Û i~ t2!Û i~ t3!•••Û i~ tn11!f̃ i~ tn12!&. ~44!

As stated in Sec. II B 3, such a term vanishes if one of
times t2 ,t3 , . . . ,tn11 associated to theÛ operators is the
minimum or maximum of all times. If not, the integrand
the product of factors
01612
nts

e

-
t

-

e

j̄~ tk!ª2
expc̄~ tk!

12f̄~ tk!
~45!

for eachÛ(tk) and a factor depending on the other operat
involved in the CF. If there are strictly less than four oth
operators in the CF or noÛ operator between the second a
the second last times, this latter factor is equal to the
where allÛ have been removed; for instance, the termDn
defined in Eq.~44! reads

Dn52E
0

T

dtE
0

t

dt8^f̃ i~ t !f̃ i~ t8!&S E
t8

t

dt9j̄ i~ t9! D n

. ~46!

If the original CF involves more operators or a ‘‘badly’’ lo
cated Û, there appears a kind of disentanglement of
original operators. Consider, for instance, the four-field
D8ª^f̃ i(t1)f̃ i(t2)f̃ i(t3)f̃ i(t4)& with t1,t2,t3,t4. A di-
rect evaluation shows thatD8 equals 2f̄ i(t1)@21
1f̄ i(t4)#@2f̄ i(t3)1113f̄ i(t2)f̄ i(t3)22f̄ i(t2)# and can-
not be expressed as a product of four factors, each of wh
would be associated to a timet j . We shall say thatD8 is
entangled, here due to thet2 ,t3 term. Insertion of at least one
Û i betweent2 and t3, as in

D9ª^f̃ i~ t1!Û i~ t18!Û i~ t28!•••Û i~ tn1
8 !f̃ i~ t2!Û i~ tn1118 !

3Û i~ tn1128 !•••Û i~ tn2
8 !f̃ i~ t3!Û i~ tn2118 !

3Û i~ tn2128 !•••Û i~ tn3
8 !f̃ i~ t4!&

with
6-10
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t1,t18,•••,tn1
8 ,t2,tn1118 ,•••,tn2

8 ,t3,tn2118 ,•••,tn3
8

,t4 removes this entanglement.D9 is the product of factors
j̄ i(tk8), one for eachÛ(tk8), and of the disentangled~factor-

ized! expression2f̄ i(t1)@211f̄ i(t4)#@2112f̄ i(t2)#@21
12f̄ i(t3)#. We conclude that a CF of the type

Dn9ªE
0

T

dt4E
0

T

dt3E
0

T

dt2E
0

T

dt1E
0

T

dt18E
0

T

dt28•••E
0

T

dtn8

3^f̃ i~ t1!f̃ i~ t2!f̃ i~ t3!f̃ i~ t4!Û i~ t18!Û i~ t28!•••Û i~ tn8!&

~47!

can be expressed as

Dn9524E
0

T

dt4E
0

t4
dt3E

0

t3
dt2E

0

t2
dt1^f̃ i~ t1!f̃ i~ t2!

3f̃ i~ t3!f̃ i~ t4!&disS E
t1

t4
dtj̄ i~ t ! D n

124E
0

T

dt4E
0

t4
dt3E

0

t3
dt2E

0

t2
dt1

3@^f̃ i~ t1!f̃ i~ t2!f̃ i~ t3!f̃ i~ t4!&

2^f̃ i~ t1!f̃ i~ t2!f̃ i~ t3!f̃ i~ t4!&dis#

3S E
t1

t2
dtj̄ i~ t !1E

t3

t4
dtj̄ i~ t ! D n

, ~48!

where the ‘‘dis’’ subscript means that the disentangled
pression for the CF integrand̂•••& must be taken.

It appears that, at any given order inl, the series expan
sion in powers ofm can be easily summed up, yieldin
memory kernels in the resultingPa(m) with a>2. For in-
stance,*0

Tdt*0
Tdt8^f̃ i(t)f̃ i(t8)& is replaced with

(
n>2

mn

n!
Dn5E

0

T

dtE
0

T

dt8^f̃ i~ t !f̃ i~ t8!&

3expS mE
min(t,t8)

max(t,t8)
dt9j̄ i~ t9! D , ~49!

the memory kernel being the exponential term, wherem is
eventually set to 1. Due to the presence of the kernel, the
between two operators at timest andt8 decreases with a time
differenceut2t8u ~rememberj̄,0).

This property extends to more than two operators. T
contribution of a diagram withn links, thus of orderln in the
l-expansion ofP, may be written as the sum of a finit
number of terms of the form
01612
-

F

e

FªE
0

T

dtnE
0

tn
dtn21•••E

0

t2
dt1P

3expS i 1E
t1

t2
dtj̄~ t !1•••1 i nE

tn21

tn
dtj̄~ t ! D , ~50!

whereP is a polynomial inf(t1), exp@2c (t1)#, . . . ,f(tn)
and exp@2c (tn)# andi 1 , i 2 , . . . ,i n are positive integers. The
presence of the memory kernels ensures that the integ
sharply decreases astn2t1 increases.

One may wonder why memory kernels appear in the
pressions above, whereas CP is a Markovian stochastic
cess. This is the consequence of the projection of the c
plete distribution of states,uP(t)&, that is, the knowledge o
the probability of occupation or vacancy of all sites, onto
partial description where we keep track of the order para
etersf(t),c(t) only. Beyond mean field, the degrees of fre
dom which were discarded pop up as non-Markovian con
butions to the dynamical evolution of the order paramete
This phenomenon is well known, and can be illustrated w
an elementary example proposed in the Appendix.

B. Results and comparison with simulations

Following the above recipes, the effective potentialp may
be expanded in powers of 1/z, see Eq.~43!. The explicit
expression for the first correction to mean field, coming fro
the two-site loop diagram, reads

p152
2l2

z E
0

T

dt2@12f~ t2!#2~e2c(t2)21!E
0

t2
dt1f~ t1!

3$@12f~ t1!#e2c(t1)1f~ t1!%expS 2E
t1

t2
dt9j~ t9! D .

~51!

The O(1/z2) corrections top required the calculation of the
diagrams listed in Eq.~43!. The resulting expression,p2, for
the D-dimensional hypercubic lattice~wherez52D) is too
lengthy to be given here, but can be obtained with the help
a computer algebra software. This gives, as a by-product,
expressionp2 for the Cayley lattice~infinite graph without
loops where all sites have exactlyz neighbors! after removal
of the square diagraml

ihk
j .

Functional optimization of the resulting expression forp
with respect tof(t) and c(t) yields EMs which include
corrections of orders 1/z and 1/z2 to the Hamilton-Jacobi
equations~34!. These corrections involve terms with mu
tiple integrals on the time.

1. Corrections to the densityr* of particles and the critical
parameterlC

We first concentrate on the solution to the EM with va
ishingc(t) at all timest. The equation forf(t) then simpli-
fies; for instance, to the first order in 1/z, we obtain
6-11
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df

dt
~ t !52lf~ t !S f~ t !211

1

l D2
2l2

z
@12f~ t !#2

3E
0

t

dt8f~ t8!expS 22E
t8

t dt9

12f~ t9!
D . ~52!

With the help of computer algebra, the EM forf(t) can be
written up to order 1/z2, and its asymptotic behavior ana
lyzed. We find thatf(t→`) equals 0 orr*.0 depending on
the value of the parameterl with respect to its critical value
lC . The asymptotic density reads

r* 512
1

l
2

1

l2z
2

6l2111l13

6l4z2
1O~1/z3! ~53!

on theD-dimensional hypercubic lattice (z52D), and

r* 512
1

l
2

1

l2z
2

6l2111l23

6l4z2
1O~1/z3! ~54!

on the Cayley tree where all sites havez neighbors. The
critical value lC can be easily obtained from the abo
equations as the value of the parameterl below which
no state with a finite density of particles can survive. This
intended to be the lower critical valuelClower

on the Cayley
tree @13~b!#, where there exists an intermediate ran
@lClower

,lCupper
# of values ofl where nonuniform metastabl

states can survive without invading the whole graph wh
abovelCupper

, there is a single uniform metastable state—
hypercubic lattices, both thresholds coincide. Settingr*50,
we obtain

lC511
1

z
1

7

3z2
1O~1/z3! ~55!

on a the hypercubic lattice, and

lC511
1

z
1

4

3z2
1O~1/z3! ~56!

on the Cayley tree. These results are compatible with
rigorous bounds@121/(2D)#21<lC<4 ~hypercubic lat-
tice! and 1<lC<(122/z)21 ~on the Cayley tree! @13#. No-
tice that the lower boundlC>@121/(2D)#21 was obtained
@13~a!# through a two-site calculation. When discarding
diagrams but the two-site loops, we findlC5111/(2D)
11/(2D)21O„1/(2D)3

…, that is, the same bound. For sma
dimensions, our asymptotic results are of poor quality.
refer the interested reader to the various works that g
01612
s

e

,
n

e

l

e
e

more precise estimates forlC , e.g., for hypercubic lattices
in 1<D<5 Ref. @46#, for D51 through series expansion
Refs.@47,48#.

Our values ofr* are in good agreement with numeric
simulations carried out on hypercubic lattices in dimensio
up to D510 for several values ofl~51.5,2,3!. Simulating
large size lattices in higher dimensions would require p
hibitive memory space. Instead, we have performed sim
tions of the conserved contact process~CCP! @49#. This
is a canonical counterpart of CP where the number of oc
pied sites is kept constant, butl fluctuates. The stationary
properties of both processes are, in the limit of infinite latt
size, equivalent@50,51#. In particular, simulating CCP with
a ~not too large! numberN of particles on an almost infi-
nite lattice ~in our simulation, of sizeL5232) amounts to
simulate CP with a vanishing density. The average value
l in CCP then coincides with the criticallC in CP. We
have been able to simulate CCP on hypercubic lattices w
up to N54000 sites and in dimensions up toD580 or up
to z581 on the Cayley tree@52#. Results are displayed
in Fig. 4, and are in very good agreement with our theor
cal predictions forlC , Eqs.~55!, ~56!, and previous simula-
tions @46#.

2. Corrections to the distribution of particle densities

The analytical resolution of the EM whenc(t)Þ0 is dif-
ficult. We have restricted ourselves to a first order in 1z
expansion around the infinite lifetime solutions for which w
have an analytical expression in the mean-field case. I
convenient to parametrize the real timet in terms ofy0 in-
troduced in Eq.~35!: y05exp@c0(t)#, where c0(t) is the
mean-field expression forc(t). In the thermodynamic limit
N→` with E→0 ~infinite lifetime!, the t→1` limit trans-
lates into they0→l limit.

In this setting, we may writef(y0)5f0(y0)1f1(y0)/z
1O(1/z2) and similarly c(y0)5c0(y0)1c1(y0)/z
1O(1/z2), wheref0 andc0 were computed previously fo
the mean-field case. From the EM, we derive two coup
first-order linear differential equations forf1 andc1:

~y021!~l2y0!
d

dy0
S f1~y0!

c1~y0!
D

5
1

y0
S 2~y021!22l11

2y0

l
~l2y0!~y011!

2l~y021! ~y021!21l21
D

3S f1~y0!

c1~y0!
D 1B~y0!, ~57!

with
B~y0!ªS l22@2y0I 11~l2y0!I 212lI 1I 2#

2l21F2~y021!I 11S l

y0
22~l112y0! D I 21

2

y0
I 1I 2G D ~58!
6-12
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FIG. 4. Numerical data for the second-order correction in 1/z to lC(z) for the Cayley tree~left panel! and the hypercubic lattice~right
panel!. The critical valuelC is obtained from numerical experiments on the conserved contact process~CPP!, see main text. Data are plotte
asz2@lC(z)2121/z# vs 1/z. The intercepta with the vertical axis (z→`) compares very well with the theoretical predictionsa54/3 @Eq.
~56!, left# and 7/3@Eq. ~55!, right#. Dashed lines are tentative linear fits~with fixed origin at 1/z50) of the data, whose slopes should b
given by theO(1/z3) expansion. The estimate ofl for eachz was obtained through an extrapolation of data for finite numbers of part
N ~up to 4000! to infinite N. For each value ofN, we ran 10 000 simulations and estimated error bars from the statistical fluctuations
upper and lower values oflC(z;N5`) were then obtained through a linear fit oflC(z;1/N), and plotted at the extremities of the error ba
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I 1ªS l2y0

y021D a12E
1

y0
dy1

l112y1

y121 S y121

l2y1
D a12

, ~59!

I 2ªS y021

l2y0
D a12E

y0

l

dy1

y1

l2y1
S l2y1

y121D a12

, ~60!

where a is defined byl5..112/a. The solutions of these
equations diverge iny051 for all initial conditions on
f1 ,c1 in y051 except forf1(1)521/(2l2), c1(1)50
which precisely amounts to settingc(y051)50 andf(y0
51)5r* up to order 1/z2. We choose these initial cond
tions in the following.

The resolution of the equations forf1 andc1 can be done
in part analytically and in part numerically. First, we treat t
neighborhood ofy0 to characterize exactly the~nondiver-
gent! singularity in this point. We have calculated the so
tions up to the order (y021)3lnuy021u included, which is
sufficient to obtain the values off1(11e),c1(11e)
slightly off ~below or above! the singularity~with e560.001
to 0.003! with a good numerical accuracy. Such an expans
amounts to a short-time expansion if one starts att50 from
the typical state where the density of full sites isr* and y
51. Then, we start to solve the differential equations fro
the valuey0511e using a Runge-Kutta-Fehlberg proc
dure. Note that the coefficients of the EM forf1 andc1 are
rather simple, but the nonvanishing second member invol
for generic values ofl, hypergeometric functions. To sim
plify the numerical resolution and to make it more preci
01612
-

n

s,

,

we restricted ourselves to the casel5112/a with a a posi-
tive integer, where these hypergeometric functions reduc
polynomials and logarithms.

This perturbative resolution yields a parametric repres
tation of the large deviation distribution,p* (r)5pMF* (r)
1p1* (r)/z1O(1/z2) with parametery0. More precisely, we
have

r~y0!ªf~y0!5f0~y0!1
f1~y0!

z
1O~1/z2!,

p~y0!5r ln y02S0~y0!2
l2

z
S1~y0!1O~1/z2!, ~61!

whereS0(y0)5 ln y02(y021)/l and

S1~y0!52
1

l4E1

y0
dy1

y1

l2y1
S l2y1

y121D a12

3E
1

y1
dy2

l112y2

y221 S y221

l2y2
D a12

. ~62!

The resulting curves forp* ~r! are presented in Fig. 2. Apar
from p* ~r* !50 given by Eqs.~53! and~54! and reached for
y051, another point of interest may be located analytica
namelyp* ~r50!, reached fory05l. This is related to the
lifetime of the metastable state,tvac;exp@2Np* (r50)#.
Some values are listed in Table II for integera.

To check the accuracy of our perturbative expans
for p* , we have performed simulations of CP on si
6-13
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TABLE II. Some analytical values for the 1/z expansion ofp~r50!, the logarithm of the probability of
reaching a configuration with vanishing density in the metastable state of the CP on a regular gr
coordination numberz. Analytical calculation can be performed for values ofl5112/a with a a positive
integer only, butp~r50! can be numerically estimated to order 1/z for other values ofl.

l p~r50! Decimal approximation

3 2 ln 312/31(253/181p2/3)/z 20.43210.345/z
2 2 ln 211/21(2107/361p2/3)/z 20.19310.318/z
5/3 2 ln(5/3)12/51(25413/18001p2/3)/z 20.11110.283/z
3/2 2 ln(3/2)11/31(21823/6001p2/3)/z 20.07210.252/z
7/5 2 ln(7/5)12/71(2270281/882001p2/3)/z 20.05110.225/z
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are
dimensional hypercubic lattices with periodic boundary co
ditions. SizesN5L6 with L ranging from 3 to 6 are large
enough that the system gets trapped for a time greater
the simulation run into the metastable state. We simulated
system starting fromr!r* or r@r* until it reached equilib-
rium. The equilibration times~expressed as the number
elementary steps! was found to correspond to continuou
times@53# teq ranging from 25 to 60. Then we run again th
simulation for timest5Mteq with very large values ofM
going from M52.53105 for L56 to M553107 for L
53, and recorded the histogram ofr over this time interval.
This gives a very good approximation of the quasistation
distribution p* since the system was already equilibrate
Numerical results forp* ~r! are presented in Fig. 5. Th
maximum of p* ~r! vanishes in the thermodynamic lim
only, and the valuer* at which this maximum is reached
also subject to finite-size corrections. To make the comp
son easier, we have vertically and horizontally shifted
experimental curves so that they all reach zero at the s
value ofr. Once this translation was done, the numerical a
theoretical curves are in very good agreement, and are e
distinguishable from the mean-field curve~Fig. 5!. This
shows that the curvature~unaffected by the translations! of
p* ~r! and, hence, the amplitude of the fluctuations in
metastable state and its lifetime, is correctly predicted by
1/z calculation.

V. CONCLUSION

In this paper, we have calculated the out-of-equilibriu
distribution of densities of particles in the contact process
large regular lattices with degreez using a quantum field-
theoretic formulation for the evolution operator. The calcu
tion is based on a perturbative calculation of the effect
potential for the densityf(t) and an instantonic fieldc(t) as
function of time t. Interestingly, this instantonic field natu
rally emerges from the parametrization of the quantum h
bosonic ~or spins-12! states needed to represent the sets
occupation numbers.

The finite connectivity corrections to the mean-field ca
(z5`) lead to the appearance of memory kernels comp
sating the loss of information due to the tracking with timt
of global fields f(t),c(t) only. Though calculations may
rapidly become involved, we have been able to show
very good agreement of the predictions they give with n
merical experiments on the average density of particles a
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more generally, the whole distribution of densities in the o
of-equilibrium metastable state of CP.

While the use of a quantum formalism was known to
very efficient to access universal quantities, e.g., the de
exponent of the density with time at criticality, the prese
study shows that nonuniversal quantities can be calcula
too. We hope that this approach will turn out to be useful
the analysis of the numerous far-from-equilibrium syste
encountered in physics or related fields. From this point
view, a remote but promising field of applications could
the analysis of algorithms in computer science where out
equilibrium dynamics over~discrete! variables abound, and
metastability phenomena are present@54,55#. Hopefully our

FIG. 5. Comparison, forD56 andl52, between the 1/D pre-
dictions for the large deviation functionp* ~r! and numerical results
for CP on hypercubic lattices with periodic boundary conditions
linear sizesL53, 4, and 6. All curves were horizontally and vert
cally translated so that their maxima have the same coordin
r* ,p*50. Due to the relatively high dimensionality of these sy
tems, the range of values ofr explored during the simulations i
very concentrated aroundr* unlessL is small. Note that the curves
for different lattice sizes, once translated, seem to depend
weakly on L. Inset: enlargement of the top region; data comp
well with the 1/D theoretical result~continuous line!, and are
clearly distinct from the mean-field result~dashed-dotted line!.
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approach will also permit to complete the average-c
analysis of backtracking algorithms initiated in Refs.@56,57#
through the systematic control of the non-Markovian effe
ignored so far@58#.
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APPENDIX: EMERGENCE OF MEMORY KERNEL
WITH HIDDEN DEGREES OF FREEDOM

Consider two variablesx(t),y(t) obeying the Markovian
evolution equations
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dx

dt
~ t !52x~ t !1by~ t !, ~A1!

dy

dt
~ t !52ay~ t !1x~ t !, ~A2!

with initial conditionsx(0)51, y(0)50. This system can
be easily solved to givex and y as functions of timet. As-
sume instead we want to write an evolution equation fox
only. Solving Eq.~A2!, and plugging the resultingy(t) in
Eq. ~A1!, we obtain

dx

dt
~ t !52x~ t !1bE

0

td8

dt
e2a(t2t8)x~ t8!. ~A3!

As a result of the existence of a hidden degree of freedomy,
the effective equation onx is not Markovian whenbÞ0, and
includes a memory kernel whose time constant is that of
y variable.
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