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A “quantum” field-theoretic formulation of the dynamics of the contact process on a regular graph of degree
zis introduced. A perturbative calculation in powers of &f the effective potential for the density of particles
¢(t) and an instantonic fielg/(t) emerging from the formalism is performed. Corrections to the mean-field
distribution of densities of particles in the out-of-equilibrium stationary state are derived in powera of 1/
Results for typicale.g., average densjtynd rare fluctuatiorie.g. lifetime of the metastable stafroperties
are in very good agreement with numerical simulations carried ol-dimensional hypercubiczE& 2D) and
Cayley lattices.
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I. INTRODUCTION identification of universality classes in reaction-diffusion
models[8,9].

The range of this “quantum” procedure is however not

Recent years have seen an upsurge of interest for the dymjted to the calculation of universal quantities. In this
namical properties of out-of-equilibrium systems in statisti-Work, we show how it can be combined with diagrammatic
cal physics[1]. Systems of interacting elements are ubiqui-techniques developed in the contexts of field theory and the
tous in physics and other fields, e.g., biology, computekstatistical physics of disordered systems to quantitatively
science, economy, etc. Most of the time the dynamical rulegharacterize the metastable properties of a well-known ex-
do not obey detailed balance or similar criteria which wouldample of out-of-equilibrium system, the so-called contact
ensure the existence of a well defined stationary distributiorbrocesg(cp) [10]. In spite of its technicalities, this approach
at large times. In other cases, a Gibbs measure does exist bfows us to make predictions that can be successfully com-
is out of reach on experimental time scales, and all phenompared to numerical simulations. It is expected that it will

ena of interest, e.g., the occurrence of dynamical phase trafermit to investigate metastabiliff1,12, or other proper-
sitions take place when the SyStem is truly out of equi“b'ties of various dynamica' models.

rium. An example of such out-of-equilibrium phenomena,

frequently encountered in condensed matter, in cellular au-
tomata or even in computationally motivated problems is the ) )
occurrence of metastable states, or regions in phase space inVVe consider a regular graph with vertex degre& and

which trapping may take place for a very long time beforeSize€ N (number of vertices Each vertex(or node, or sitg
further evolution becomes possible. may be empty or occupied by one particle. Hereafter, we

The calculation of the temporal properties of these Sys;‘oc:us on the continuo_ug time vgrsion of (_ZP where a particle
tems often turns out to be very hard, even when dynamicdf spon.taneously annlhllatedlwnh rate 1 |ndependently from
rules look like innocuously simple. Over the past decade®ther sites, and an empty site becomes occupied with rate
however, various models and problems have been succegsfocc/Z Where e is the number of its occupied nearest
fully investigated, e.g., Refd2—6]. Among the analytical neighborg10]. _
methods used to tackle these systems, some rely on the ob- 1he value of the parametarstrongly affects the behavior
servation that the master equation for a system of classicQf CP- For infinite size graphs, e.g., infinite hypercubic lat-
degrees of freedom may be seen as a Stihger equation tices, _there exists a critical valug: of \ such thaf13] the
(in imaginary time where the quantum Hamiltonian encodes following hold. _ _ _
the evolution operator. Exact, e.g., Bethe angaizor ap- (1) If A<\c, the number of particleoccupied sites
proximate, e.g., variational or semiclassical techniques deduickly decreases towards zero. Later, the system remains
veloped in the context of quantum field theory may be usedrapped in this empty configuration.
to understand the dynamical properties of the original system (2) If A>\c, the densityp of particles reaches a plateau
[7]. One important achievement made possible by this apvalue p*(\) independently on the initial densifyL4].
proach once combined with renormalization group tech- (3) At criticality, that is, when\ =\, the density even-
niques has been the calculation of decay exponents and tieally relaxes to zero with a slow algebraic decaft)

~t72, This critical behavior falls into the directed percola-

tion universality clas$15—17. Exponenta is equal to 1 in
*Electronic address: Christophe.Deroulers@ens.fr dimensions larger thaD =4, and approximate expressions
"Electronic address: monasson@Ipt.ens.fr in powers ofD.—D in lower dimensions have been obtained

A. Motivations

B. The contact process: Definition and phenomenology
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FIG. 1. Profiles of the density of particles vs time for the contact process over a complete grapiNofertices, initially filled with
particles[p(0)=1]. (a). Thermodynamic limitN—c. From bottom to top: subcritical(<A =1, the density exponentially relaxes toward
zero, critical (\=\, the density algebraically decays to zeropgt) ~t~1), and supercritical X>\, the density exponentially relaxes
to a finite value p* =1—1/\) cases. The density obeys a deterministic evolution equéd®nand no fluctuation is presertb). Finite size
lattice, withN= 100 sites. CP is a stochastic process, and the density profiles vary from run(t@ershow here one run for each value of
N). The density quickly relaxes to zetsubcritical regimgor a finite value(supercritical regimge In the latter case, the system is trapped
in a metastable regime where the density fluctuates for a very long time around its platea(insgtianotice the difference of time scple
till a large fluctuation drives the density to the zero value.

through the use of renormalization group techniques
[7-9,15-18

These behaviors are displayed in Figa)l The exact The calculation of the large deviation functierf (p) is the
value of the critical parametévc is unknown in any dimen- main scope of this paper. For this purpose we use a path-
sionD, but rigorous bounds and estimates have been derived
[13(b)].

For finite-size graphs, the empty configuration, referred to
as vacuum in the following, is an absorbing state for the
dynamics. Starting from any initial configuration, e.g., fully
occupied state, CP will eventually end up in the vacuum
configuration after a finite time,,.. This forces the above
infinite-size picture to be smeared out by fluctuations in the

tyac(N)=exg —N=*(0)+o(N)]. @

case of large but finite latticeis1,13b),19]. A locates a — 0!
cross-over between faft, ;o(N,A<Ac)=O(InN)] and very -
slow [t,.c(N,A>Nc)~expO(N)] relaxations towards the

vacuum configuration. In the latter regime, the plateau height
p* merely defines an average value around which the densit
exhibits fluctuations until the system is driven to the vacuum
through a very large fluctuatioffFig. 1(b)]. On time scales
1<t<t,,o(N,A>\(), the system is trapped into a meta-
stable stat¢20]. A (pseudgequilibrium probability measure
for the density can be defined,
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Function 7* , which depends o and other parameters, g 5 The large deviation function* for the density of par-
e.g., the dimensiol for hypercubic lattices, describes rare yicies in cp with parameter=2 for the D-dimensional hypercubic
fluctuations from the average densjij. Its maximal value |attice. TheD— curve corresponds to the mean-field limit, and
is zero forp=p*. Densitiesp distinct from the average one cgincides with the case of the complete graph oMer sites.

are exponentially(in N) unlikely to be reached, and piots of the predicted value of*(p) at the order I for D
m*(p)<0, see Fig. 2. In particular, the probability of a very =6, 3, and 2 are obtained with the expansion of Sec. IV. The non-
large fluctuation annihilating all particles scales asconvexity of the curve foD=2 shows the inaccuracy of the trun-
exgN#*(0)], and thus, cation to first order of our I expansion in this range of densities.

P(p,N)=exdN 7*(p)+0o(N)]. 0 01 1

)
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integral representation of* where particles are encoded  TABLE I. Translation table from operators W into Lagrang-
into quantum hard-core bosons, grspins, and develop a jan contribution to. We have addeda’ in the left column
diagrammatic self-consistent evaluation of the path integraghough this operator is not in normal order to show the consistency
which allows us to write a systematic expansion7f in  of the translation rules with the anticommutation relation.

powers of 1z (Sec. I). In the infinite connectivity limit £

— o), this formalism reduces to the mean-field theory of CP,  Operator inW Expression in\/
analyzed in Sec. IIl. Finite connectivity corrections#d are

calculated in Sec. IV. As a by-product, we obtain an expan- ! 1

sion for the critical parametexc(z) in powers of 12. The a b exp(y)
validity of our calculation, effectively carried out up to order al (1-plexp—¢)
1/z? (and 1% for 7*), is confirmed by numerical simulations a'a ¢
performed ornD-dimensional hypercubicz&2D) and Cay- aa' 1-¢

ley lattices.

~2_ .
Il FIELD-THEORETIC ERAMEWORK where ¢ <[0,1], 0.5[0,277], andi“= —1. These states satisfy
the closure relation
A. Path-integral formulation of the evolution operator

We start by yvriting the master equatiqrj of CP using a ifld¢f2wd0|¢,0><¢,0|=}1. (6)
guantum formalism, according to the familiar procedure of m™Jo 0

Felderhof, Doi, and successqdl,22. For each sité of the

graph we define a hard-core boson with associated state veto allow a simplification of the expressions in the translation
tors|0); (empty and|1); (occupied, and creation and anni- table given below, we make use gf=—;In[¢/(1-¢)]+i6
hilation operators anda; that anticommTute ona sir;gIeT site instead off, and introduce the following notations:

but commute on different sitesfa;,a;].=1, [a;,a;] B T

=g ,a;r]z[ai ,3;]=0 (alternately, we could use spin]s 1/2 (¢.41= (1= )™ (0] +exp(—y)(1]],

with a mere rewriting of the equationsio each occupation R
numbers;=0,1 of sitei is associated a vectds;). Then, to |¢.4)=(1-¢) 1a $)0)+pexp(P|L)].  (7)
each states of the graphset (5;,s;, . . . ,Sy) of occupation  For the whole graph, a state is the tensor product of the states

numbers of all the sitdsorrespond$23] a basis vector of a  jar gl sites:| é, )= ®\ || &; , ). Making use of Trotter

N_di ; &\
2 —dlmensmn_al vector space}s)—ls_l_)®|s_2>®§---_®|:¢,N>, formula [28] and of the closure identity6), we obtain a
and, to the time-dependent probability distributiBifS,t),  path.integral expression for the matrix elements of the evo-

the state vectofP(t))=X:P(5,t)|S). The master equation | . - .
for P(S,t) is now equivalent to the evolution equation of the lution operator exp{ W) between times 0 and [8,24)

state vector

(b1, drr|ext TW)| o, o)

d n .
gt P(t))=W|P(t)), (3 _ J¢(T):¢T,W(T):¢TD$(U Dt exp(—S[{, i),

$(0)= 0. 4(0)=1g
where the evolution operatt\?v is the infinitesimal generator (8)

of the transitions. For CRV= W+ A W, with _
where the action reads

Wann:Ei (1_aiT)ai ) dei(t)

- - T N ~ - -
~SHd.d}1=- fo oltfiZ1 $i() =g~ W(d(t), (1),
)

Wc,e% 2 2 [af(1+a)~1]ala;, (4)

i jel

and the integral runs over all field configuratiquSt),zZ(t)

wherej ei means that sitgis one of thez nearest neighbors OVver the time interval € [0,T] matching the required bound-
of sitei. ary conditions at initial and final times.

To map the stochastic process onto a path integral or FunctionW encodes the action of the evolution operator

field-theoretic formulation[8,9,24, we introduce[25,26  \i on the states. Its expression is obtained by first writiig
continuously paramet_rlzed states suitable for hard-cor@y normal order form thanks to th@nt)commutation rela-
bosong27]. On each site of the graph, the state bra and Keions, then using the translation Table I, see REfs9,24.

are, respeciively, For CP, we obtaitW= W+ AW, with
(6,61=(1-¢)"%0|+ ¢ exp( —10)(1],

N
6,6)=(1- $)120) + pPexp(10)1),  (5) Wend 6.0 = 2, i(expl)=1),
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B. Diagrammatic expansion of the effective potential

N
i:El $i2 (1= gplexp—y;)—1]. 1. Constrained fields and conjugated sources

jei

Werd 6,4) =

N|

(10) Let ¢;(t) andy;(t) be two arbitrary functions depending

. . on timet and sitei, with ¢; €[0,1], from which we define
The previous quantum formalism allows us to express the_ — —-
expectation value of any observable of interest. For instancei (1) =[1~ #i(t) {exd —¢4(H]—1}. We choose as elemen-

we may start at time¢=0 from a random statép,) with  tary (Site-attachetoperatorsl— ¢;=1—aja; and ¥;:=a(l
exactlyNy=p, N occupied sites and project at the end on atai) —1 [32], and impose the constraints

state(py| with exactlyNy=pt N occupied sites: (- &Si(t))=1—$i(t), GaO)Y=(), (14)

1 where
lpoy=mry 2 @il (1-5)[0) +s1)], o )
Mo < A>:<pT|eX|c(rolt'VV> Aexp([5dt’ W)|po)
. (prlexp(fodt"W)|po)
(p1l ==E§ ®i-1[(1—5)(0] +si(1]], @D s the average value of operatiat timet. This can be done

through the introduction of Lagrange multipligisourcegin

where the sums run over all stat&svith Ng (N1) occupa- the evolution operatotV is changed toWV’(t) +W"(t)1 in
tion numberss; equal to 1, and the remainify—N, (N the definition of(A) where

—N7) ones equal to 0. The probability that the density of

particles equalg at timet=T given that is was equal oy W (1) = e Wiat A Wigre— Z [h(H(1—d)—gi(Hil,

at timet=0 is thusP(p1,T|p,0)=(p+|expT W)|py). Using '

the path-integral formalism developed in this section, the

logarithm T of this probability reads W' (t):= >, {hi(t)(1— (1) —gi(Oxi(H}. (15
I
— 7 7 _ 77 Fields h;(t) and g;(t) are expected to be as regular as the
Mpr,Tlpo,0)=In f D) Dyyexp~ST{¢.4i]) imposecli order palrameteizs(t) and y;(t), and are assumed

to be (at least once differentiable with continuous deriva-
% " 7 y J tives over the time intervat €]0;T[. However, to match
{prl (), AT H(0),#(0lpo) |, (12 with the components of the final bra and initial ket, Dirac’s
S-singularities may be present 80 andt=T. Note the
where the boundary conditions for the fields at initial andintroduction of a new parametgrin front of the annihilation
final times are now free. Knowledge of the above functiongperator in the expression &¥’. This parameter will result
gives access to the large deviations function defined in Ecgonvenient for technical reasons only, and we will ultimately
(1) through be interested in calculating quantities far=1. This biased
evolution operator allows us to express the logarithm of the
) 1 probability that the final density equats for a fixed set of
m* (p)=lim lim NH(P-T|P*10)- (13)  order parameters,

T—o N—x
_ N T

Notice that, although there is no notion of energy nor Hamil- et Ti{b.x}po.01=INpr T, 0) [ po) + fo dtw(v),
tonian in CP, the form of its path-integral formulation closely (16)
looks like a classical mechanics Lagrangian, with a kinetic ~ .
energy term and an effective potential energy term. and our task will be to comput&)(T,0):=exy [gdtW (t)].

Calculation of the path integral on the right-hand side ofRequiring that Eq(16) be extremal with respect ig;(t) and
Eqg. (12) will be done through a perturbative expansian\)  ;(t) in addition to the constraints above ensures thét)
of the effective potential for the average values of the fields=g;(t)=0 at the extremum ofl. Therefore, at the saddle
(1), (1), following an approach used in the context of Point, ITin Eq. (16) will coincide with 11 defined in Eq(12).
classical statistical mechanif29,30. This expansion allows ~ The effective potentiall can be expanded in a double
us to calculate quantities of interest, edf*(p), \c, p*, ..., POWEr Seriesim, u,
in powers of 1D. In the following, we will closely follow
the technique and notations of RE30] which makes use of M= > NuPl,, with T,
this perturbation expansion scheme to calculate equilibrium ab=0
properties of the Ising model in large dimensions. The main 1
difference(and complicatiohis that, here, fields depend on =T b—,(@)%ﬁﬂ)"ﬂlx:#:o- 17
time. An application of this approach to the study of the T
dynamics of continuous spins models can be found in Refwe calculate belowll, g, that is, the effective potential in
[31]. the absence of any evolution process albeit the one resulting
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from the kinetic constraint over the order parameters, andlso verified that singularities ih; (t) and g;(t) at timest

then expose how to obtain higher ordersaifb through a  <]0,T[ are absent unles#;(t) or y;(t) are discontinuous,
systematic diagrammatic expansion. A nice feature of thigind that a discontinuity of the order parameters is not favor-

expansion scheme is that, at any given orén A, we are  gple in terms of action and can be discarded. Optimization of
able to resum the whole series in powerspoind, thus, to 17, , with respect toh; , and h; 7 yields

express our result as a unique power series,
o+ =20 | R (T
=3 Nlly(w) with =3 P, (18) i o= i(0) + Py G A
a=0 b=0
(20)

and setu=1 in the above expression. i ) o i
and allows one to fulfill constraint6l4) at initial and final

2. Calculation of [Ty times.
Gathering all contributions tdl,o and using Stirling’s
We set\=0. W’ decouples into a tensor product over the formula, we find after some algebra

sites. The latter remain however coupled by the constraints
that the bra(p| and the ket py) correspond to configura-
tions including exactlyN+= ptN andNg= poN patrticles, re- H0,0=2
spectively. We thus introduce two further Lagrange multipli- :
ers, vy and vq, to select the initial and final densities of
particles. We replacépt| and|po) in Eq. (16) with, respec-

dei(t
fdtlﬁ.(t) il )+VT[PT ¢i(T)]

— ol po— #1(0)]1— ¢;(0)In ¢;(0)—[1— ¢;(0)]

tively, (vr,pr|:=(OlexdrZi(pr—aa)] and |vg,po) _

=(N,) " exilZi(aa—pe)]0), where |0)=(|0)+]1))*" XIN[1=;(0)]| +N[poln po+ (1~ po)IN(1—po)].
is the sum of all possible configurations. Note that, po) is

normalized so as to represent a probability distribution. Once (21)

sites are decoupled] may be expressed as a sum of site-

dependent effective potentials, each depending upgn),
Xi(D), hy(1), g;(t), vr, andyy. We will eventually optimize
the resultingll over vt and v, to ensure that the final and Sity ¢;(0).
initial densities are the requested ones.

We sendu to zero to makew’ diagonal in the basis
(10),/1)). This allows us to compute exactly the evolution  For the rest of this section, we call average of an operator

operatonM(t,,t;): =exd/, 2\N’(t)dt] and then any average of A, and denote byA), the ratio(vr,p|AW(T,0)|vo,p0)
operators or correlation functlo(CF) e.g..(ai(ty)al(ty)) 0Ver<VT prM(T, 0)¥o.po)- |-Tet us introduce the operators
—<VTva|)7V(T t,)a; W(tz, 1)aWV(t1,0)|Vo p0> Evaluat- — [ 3dtWy,, and S,= —fodtWcre These are directly

find back the rules Iisted in Table | with overbarred fields =(— 52) valid for any)\ and . The average values of the

[33]. The expressions for the sourdest) andg;(t) are then operators 31 and 32 are <31>— —fgdt2.¢|(t)(eXF[lM(t)]

Notice that the sum of the last two termsgi(0) in Eq.(21)
is equal to the entropy dfl noninteracting particles at den-

3. Perturbative expansions in powers af and p

[34], for times O<t<T, ~1) (for all N, w) and(S),—o=— 3t ()T cix; (D)/2
d_ -~ d - (only for A=0), respectively, and give the beginning of the
hi(t)= —i (1) + (e’ —1)—In[1— ¢;(1)], expansion oflI. The sequel is obtained by iterative applica-
dt dt tion of the following identities true for anydifferentiable
g B operatorA:
gi(t)= —e‘ﬂi“’alnil— (D], (19

3,(A)=(a,A)+(AU), a,(A)=(a,A)+(AV) (22

froLn which_we obtain hi(t)[l—a(t)]—gi(t)z(t)=[1 with
— ¢;(t)]d/dtyi(t). In other words, the term iW” of Eq.

(16) gives back, aside boundary terms involving initial and . . . T R
final values, the “kinetic” term of the actios (9). U= —51+<51>+f dt> [a,hi(D){i— (D)}
It appears that constrain{$4) at timest=0 andt=T can o !
be imposed by nonsingular sourcegt) and g;(t) only if +0,0i (O i — xi (D}, (23

the required state vectotsh;(T),;(T)| and|¢;(0),1:(0))

are parallel to the initial bréwy,p+| and ket vq,po), respec- - P T R

tively. To bypass this constraint, we introduce a singular term V==S5+(S)+ fo dtZ [axhi(){¢i— #i(1)}

h; o6(t—0)+h; +8(t—T) in the sourcen;(t)—it is sufficient

to modify h;(t) only and letg;(t) be regular, and we have +a,0i(O{xi—xi(D}]. (24

016126-5
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Though sites are coupled Eythroughéz, successive appli- pn(t)=exgd Nmye(n/N,t)]. (26)

cations of operator§),V permit to evaluate théderivatives
of) CFs required to compute the expansion in powerg.of
and A at A=0 where these CFs are factorized over sites

Notice thatU, V, and their derivatives with respect o
and A that will appear in higher orders of perturbation
involve the derivatives of the fields and g. These can
be expressed in a convenient way from the identitig$) where

= _(?gi(t)H, gi(t)=—(9;i(t)l_[, hi,T= _ﬁg,(T)H and hi,0=

~dg 1. In particular, 9,h; 1= 4 1)(S;)=0 and d\h; o Wyl &, 1= dlexp¢h) — L]+ N p(1— @) exp(— ) — l(]2.8)

Inserting this scaling ansatz into the master equatih)
yields the equation of motion for the large deviation function
mue(p,t) of the densityp of particles,

deme(p,t) =Winel p.d, mue(p, 1)1, (27

=<9gi(o)(§2>=0, allowing us to remove all terms involving

&s in h; in the expressions of) and V. Also, 4,h;(t) The very strong analogy between the above definition and

_ e 2 the expression for the matrix elements of the creation and
=4 and 4, 0;(t) = , So that the operatov O . X ) ;

_‘f’i(‘)<_52> Ag'(.) %i0{S2) _ per annihilation operators in Eq10) will be explained in the
writes in a convenient form whern\ vanishes: V, _g following section.

= [3dtZi3; L di(D)X;(1)/z, where &(t)=¢;— (1)1 and After a transient depending on the initial condition, e.g.,
Yi(t)=xi—xi(t)1 express the deviations of the elementaryall sites are initially occupied and all densities lpat1 have
operators with respect to their average valuég(t))y  Z€m probability, the large deviation functiafy: relaxes to
=(Xi(t))=0 for all \,u. Finally, let us give some useful ItS stationary value,
properties ofJ and V. 1
(1) (U)=(V)=0 (and if we write these operators in a TFKAF(P):—X+(1—P)[1—|n?\—|n(1—P)]- (29
natural way as sums over the graph sites, each summand
(U)) and(V;) also vanishes It is maximal and equal to zero ip=p*. The value inp=0
(2) (Ui (1)) =(Vi(t))=(U%i(t))=(Vxi(t))=0. gives immediate access to the average lifetime of the meta-
(3) Any CF of the type(A,A,---A) vanishes if the stable state with density*, that is, the time it takes to the
time attached to thé&) operator is smaller or larger than all system fo reach the empty state, see @4.

other times attached to th&, operators. Indeed, a direct 1

evaluation of(vr,p7|U and U]vg,po) after explicitly ex- tvac()\vN)~eXF{N Kﬂn)\_l”' (30)
pressingU in a similar way as we did fo¥, -, shows that

both vectors vanish. This value may be successfully compared to the results of

We now apply the above scheme to the calculatiohlof Fig. 4 in Ref.[35]. A direct numerical simulation of the
evolution of thep,(t) with N up to~100 has allowed us to
lll. MEAN-FIELD THEORY  (z— LIMIT ) check the validity of scaling hypothesig6) and to obtain a

In this section, we first expose the analysis of the contacgzei\;)feCt agreement of the experimental distribution with Eg.

process on a complete graph. We then explain how thi
mean-field theory can be found back through the formalism ) ) ) )
developed in Sec. II. B. Mean-field theory from the “quantum” formalism
The first termll, o in the expansion of the effective po-
A. A simple derivation of mean-field theory: The contact tential IT in powers of\ and u is given by Eq.(21). Then
process on the complete graph Iy 6= —(S1)00 and Mg =—(S,)00, the expressions of
Consider CP on the complete graph withsites. As any  which in terms of¢ andy are given above. These are suf-
two sne; are adjacent, an exact accogljt of the dyna_mlcs Cditient to establish the expressions fy(x) and I1;(u),
be obtained from tracking the probabiliy,(t) thatn sites  due to the third property of Sec. 11 B 3. Indeed, we have the
are occupied at time¢ [35]. The master equation for these following.
probabilities reads, (1) M,,=0 for all a=2. Proof: d,IT1=—(S,0) since
dp, N ,5,=0. The expression ofS,U) involves a double sum
gt D=+ Dpaa(O+ G (M=DIN=N+1)Pp_1(1)  over the sites, say,j, of terms of the form(A,U;). Any
such CF vanishes for alt as stated in Sec. |1 B 3.
(2) I1,,=0 for alla=1. Proof: 4,0,I1= —(S,0) which,
for \=0 and all «, reduces to a triple sum over the sites,
with the conventiong_;(t)=py+1(t)=0. In the largeN S ] € andk, of CF of .the- type<A‘.BJUk> where th_e
limit, we expect from the considerations of Sec. | B the fol- times attached té; andB; coincide. Again, these CF vanish

lowing scaling behavior for the probabiliti¢86]: due to the presence of thé operator.

A
—|n+ mn(N—n) pn(t), (25
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As a result, settinge=1, we obtain has then to be functionally extremized over the fieftls)
andy(t). The equations of motio(EM) for the fields are the
M p7,T:{¢.x}po,0] Hamilton-Jacobi equations associated to Lagran¢aa
=§il vil pr— ¢i(T) 1= vol po— $i(0)] ‘Z—‘f(t)=a¢\7vw[¢(t),¢(t)],
~i(0)In[ ¢(0)]1~[1~ ¢;(0)]IN[ 1~ ¢;(0)] de _
a(t): — dyWyel p(1), (1) ] (34

T [— do
T ol ot (1= po)in(1 p0)+fo dt( it dt ® along with the already established initial and final condi-
tions: ¢(T)=p7 and ¢(0)= po.
The solution of the EM yields the logarithMry of the
probability to go from a configuration with densig(0) at
time 0 to another configuration with densigy(T) at timeT.

To solve these equations, we make use of the facMhgatis

a conserved quantity from E¢34), which we denote by.
Then, the densityp and the tima can be expressed as func-
%ons ofy:=exp@),

— — N— —
FO{eXTu (O] -1+ ZA(0 2 X1
+0O(\?). (31

For \=0 (for u=0), we are able to compute actididl)
directly, without using such a perturbative expansion as E

(17), since the matrix ofV’ is upper(lower) triangular in the
basis(|0),|1)). However, when botiA and x are nonzero, we y o . 5 o i
do not know how to proceed without the perturbative expan- = fy(o)dy [y =Ny = D)7 +4ENY (y' —1)] %
sion. ' . . ' . (35)
In search for a translationally invariant, i.e., site-
independent evolution, we choose all quantities to be sitdhe action of the trajectory equals the large deviation func-
independent and remove site indices. We also drop the bafn, WMF(p,T)ny(T)dy'|n(y')(?y¢(y')+TE. The shape of

0
over the fields to simplify notations. Equatié8l) then be- the solutions of Eyé()g,a,) depends on the sign af(0). As
comesmye=II/N with shown in Fig. 3, if we exclude solutions whegt) is al-
ways zerd 37], three cases have to be distinguished.
mvelot Ti{#. x} po,0] (1) If %(0)=0, the solutions have an infinite lifetimes(t)

remains zero at all time88], and the fields(t) obeys the
first-order ordinary differential equation

do
G O="280

=—¢(0)In[¢(0)]—[1—¢(0)]In[1— ¢(0) ]+ pgIn pg
+(1=po)IN(1—=po) + vi[pr— P(T)] = vo[ po— ¢(0)]

1
SO —1+ . (36)

T d ~

o wio G 0+ Taetoopwn). @
This equation coincides with the mean-field equation for the
density p(t), straightforwardly obtained when neglecting
correlations between occupation numbers of neighboring
sites. At large timesg(t) tends to 0 opp* =1—1/\ depend-
'Qg on whethemn is smaller or larger than the critical value

c=1 as shown in Fig. (). Notice that the actionmyr
vanishes ag/=0.

(2) If (0)<0, the solutions have a finite lifetime and
¢(t)—1 while ¢(t)— —« [see Figs. &,b].

(3) If ¥(0)>0, the sign of the conserved quantEymat-
ters. If E>0 (which is necessary ih<1), the lifetime is
finite [see Fig. &)]. If E<O0, the solutions are periodjsee
Fig. 3(d)]. If E=0, the situation is the natural intermediate

where Wy is defined in Eq.(28). The above expression
suffices to the study the mean-figldF) case, i.e., when the
site connectivityz goes to infinity. This may happen for large
complete graphs, where each site is connected to all oth
sites g=N-1), or in theD—oo limit of a D-dimensional
regular lattice ¢=2D). As shown in Sec. IV A, higher-order
terms in then expansion giveD(1/z) additive contributions
to IT (within a site-independent ansatand vanish in the
—oo limit. Therefore,me is the exact mean-field expression
for the action. To obtain théexponentially inN) dominant
trajectory of the order parametets(t), ¥ (t), we first ex-
tremize Eq.(32) with respect tovr,vq, to get the expected L
relationsé(T) = pr and ¢(0)=po. Notice that, if the initial ﬁgg’;’i‘?‘&;ﬁﬁg’gg;ffg%‘rélii'”ﬁgﬁgz the lifetioethe pe-
state were a superposition of configurations with various Nonzero fields) select instantonic .solutions allowing the
densities, e.9f gdpoexttNa(po) lpo), EQ. (32) would include system to escape the typical behavior described byjthe
an additive contributionq(p_o); the most pmbﬁb'e initial den- solution. These solutions have an extensive action, and are
sity po would then be given by the solution af,q(po) therefore exponentially suppressed when the system size in-
=(0). Theresulting expression, creases. However, they are the solutions giving rise to large
deviations of the density for a finite voluniEig. 1(b)]. The

T d¢ . . :
= | dt! ¢(t)—=(t)+W, t), et 33y  most probable fluctuations correspond to long times solu-
M fo [l’b( ) dt ®© urL #(1). 4(1)] @3 tions, i.e.,E—0. In this caseT(E) diverges like logs, and
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FIG. 3. Solutions of the mean-field equations of moti@d) for \=2 (p*=1/2) (A and B). For negativey(0) (= —10 7 here, the
solutions have a finite lifetime. After quickly reaching the most probable value of the density of pagfcles(t) stays for a long time in
the neighborhood of* but finally reaches unity, while/(t)— —. The actionm, tends to a negative finite value; the main contribution
to it comes from the final jump ap from p* to 1.(C) For positivey(0) (=108 herg andE>0, the lifetime is finite. After quickly reaching
p*, ¢(t) stays for a long time in its neighborhood but finally transits to the neighborhood of 0 where it stays again for a long time, while
(1) transits to In\ and stays close to it. Finally(t) — + o while ¢(t)—0. mye tends to a negative finite value, the main contribution of
which is accumulated during the trangid) For positivey{0)>0 (=10 8 hera andE<O0, the solution is periodicp(t) and(t) oscillate
between two values inside tfie,p* ] and[0,In(\)] intervals, respectively, and the action diverges-te by hops.(E) Phase portrait with all
types of solutiongoriented according to the time evolutiohe phase space divides into four regions delimited by the solutions for which
E=0 (represented in thick lingsin each region the sign @ is indicated. The quasistationary state appears on this diagram as the crossing
point (=0,4=p*) of two solutions withE=0: it is stable along they direction but instable along the direction.
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the TE term vanishes. Whek>1, we have the simple iden- be described by a Langevin equation at temperafulr43].

tity ¢(y)=1-y/N if 0sy<N\, 0 if y=\. In particular, the This description breaks down as soon as we consider large
weight of the instantonic solution that goes freft0)=p* to  deviations, or transitions from the metastable to the empty
¢(+x)=p coincides with the stationary large deviation func- state, as can be seen from the numerical comparison of the
tion for the densitymye(p) defined in Eq(29). true solutions of Eq(34) with the solutions of Eq(39).

The large deviation function can be obtained at any finite Extending the validity of the Langevin equation approach
time t too. To do so, we use expressitBR) to express the to the full domain of¢$ and ¢ would require the use of a
probability of going from the state with distributiom(p,t) ~ MSR-like formalism[39-42. Interestingly, MSR stated in
at timet to the one the state withr(p,t+dt) at time't their original work that the knowledge of the physical fieid
+dt. Special care must be paid to discretizing the term in-2lone is not sufficient to compute all quantities of interest
volving time derivations in a symmetric way betweeand  beyond the Gaussian approximation, and that the introduc-
t+dt as requested for path integré®8]. The resulting evo- tion of a second operatgcorresponding to ouy, or toa and
lution equation for the large deviation function coincides@’, whereas¢ corresponds ta'a) to express the response
with Eq. (27) as expected. functions of the physical field was required.

C. Relationship with Martin-Siggia-Rose
and Jansserde Dominicis formalisms IV. FINITE-DIMENSION THEORY  (1/z EXPANSION)

The above formalism is, to some extent, related to the A. Analytical calculation

treatment of Langevin equations by Martin, Siggia, and Rose Cajculation of the corrections to mean-field theory re-
(MSR) [39] and Janssen and de Domini¢#0—42. If X(t)  quires the knowledge of higher-order terms in the expansion
is a classicalscalar or vectorfield, the Langevin equation  of T in powers of\ and u. Strictly speaking, our expansion
dx is, after we resum Fha—expansion, an expar_lsion in powers
a(t): —V/(x(t))+ 5(t) (37) g;)\e,xor, more preqsely, ok/z. It naturally gives access to
pansion ofl in powers of 1Z as shown below.

describes its evolution in the potentil (V' denotesd,V)

under the random Gaussian forgey is specified by its first ) ) ) )

two momentsz(t) =0, 7(t) 7(t')=2T8(t—t'), whereT is _ To show _how this expansion works in practlcez, let us con-
the temperature and the overbars denote the noise averagider the first correction to Eq32), 21I1z0=diI1|o,0=

Let P(xr,T|Xo,0) be the probability that equalsx; at time  — d\(S2)00= —(S2V)0,0=(V?)0,0 Since ,S,=0 and(S,V)

T conditioned to its initial value. This probability can be =—(V?2). V,, involves a sum over couples of neighboring
expressed as a path integral through the introduction of 8ites that can be written as a sum over oriented links. The
response variabl conjugated tox [39-42, term ¢;Y; will be represented by a link going from sitdo

i site j. Therefore(\A/Z)O'O writes as a sum over couples of
;{ f dr[i)‘((r)
0

1. The diagrammatic expansion

x(T)=x
oriented links. Whem =0, sites decouple and terms where a

.
P(X7,T|X0,0)= f Dx(1)DX(1)ex
site carries a single operatgr or % vanish(Sec. 11B 3. We

x(0)=xg

dx A are thus left with terms where two parallel links loop over
X a(T)JFV'(X(T))) —TXZ(T)] . (38  two neighboring sites,j on the lattice,
Functional optimization of Eq.38) with respect toc, X yields T T 3 B
the classical equations of motion, i<3T>j = / dt/ dt’ (¢i(t) % () s (t') X5 ))o0
0 0
dx(t) - dx(t) (4)
==V (X(1))—i2TX(t), ——=K(OV"(X(1))
dt dt
(39

and terms with the same structure but links pointing

from which we obtain thatix/dt(t)2— V' (x(t))? is a con- In opposite directions. As\=0, this four-point CF fac-
stant of motion. torizes into a product of two two-point CFs:

These EMs are formally identical to those derived for CP
(34) in Sec. lll (x playing the role of¢ and X that of ~ e~ e
—iy) when |yi<1, with the following choice of potential (X (D i) X;(t"))o0

and temperature: —(BOBE o T (OT )00
V($)=Nd(d—¢*), 2T()=d(L+N(1—¢)). (40)

Therefore, in the weakly fluctuating regime whaegeis ~ Each of these CFs can be straightforwardly computed, e.g.,
small and¢ close to its most probable valy#, the system  (¢;(t) i(t"))o0= ¢i(t1)[1— ¢i(t)] wheret;=min(t,t") and
evolves in an effective potentid with fluctuations that can t,=max(,t’). The final result reads
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T to _ _
i <>j = —2/ dt, dty ¢,(t1) (1 —¢(t2)) (1 +7j(t1)) X;(t2) - (42)
0 0

The antiparallel two-site loop diagram may be evaluated in the same way. Notice that the final outcome does not depend on the
indicesi,j of the sites, provided these are neighbors on the lattice. We will therefore drop site indices in the following. Then,
we count the multiplicity of each diagram, equalNa for both parallel and antiparallel two-sites loops. Finally, each diagram
gets a factor ¥ coming from the §/z)? factor inW,,. As a result, the net contribution will be of the order of,1that is,
1/D on aD-dimensional hypercubic lattice.

We are now able to write the general expression of tlzeekpansion in a graphical way. For instance, for a hypercubic
lattice of dimensiorD (and site connectivitg=2D),

)\2
T = TMF + ———=D <>+

2!(2D)?
A3 At J —1)
D> a0
(2D)3D * @Dy (2D)* 1)6 +3 2 + (43
4'(2D Tep? S+
|

Each undirected diagram in the above expansion represents . expi(ty)
the sum of the correlation functiorifike the one entering Et)=——— (45)
I1,,and evaluated aboyghat share the same support on the 1-(ty)

graph but differ by the orientations of the links. There afe 2
link orientations for an undirected diagram witHinks. The - .
coefficients in front of the diagrams take into account the for eaChU.(tk) and a factor dependmg on the other operators
power of\/z (equal to the number of links in the diagram mvolved in the CF. If there are strictly less than four other
the inverse factorial from the Taylor formula, and a combi-operators in the CF or nd operator between the second and
natorial factor. This combinatorial coefficient is the productthe second last times, this latter factor is equal to the CF
of the multiplicity of the undirected diagrartmumber of where allU have been removed; for instance, the tebm
times it can be drawn on the lattice, divided by the latticedefined in Eq.44) reads

sizeN) and of the number of ways to associate a titrie

each link of the diagram when evaluating the 2R]. As T . . n

one may infer from the first diagrams, there is only a finite Dn=2] dtf dt'(d’i(t)(ﬁi(t'»(f dt”gi(t”)) . (46)
number of terms contributing to a given order irz.1/ 0 0 t/

2. Summation of the p-expansion and memory kernels o ]
If the original CF involves more operators or a “badly” lo-

cated U, there appears a kind of disentanglement of the
original operators. Consider, for instance, the four-field CF

IT being the logarithm of a generating function of the
fields, all the diagrams entering expansi¢iB) are con-
nected. Moreover, for=0 all nonirreducible diagrams, i.e.,
which may be cut into two, or more, pieces by removal of aD” =(bi(t1) $i(t2) hi(ts) Pi(ta)) with t;<t,<tz<t,. A di-
vertex vanish, as in the virial expansip4b] and possibly the rect evaluation shows thaD’ equals —¢(t)[—1
Ising model[30]. This statement does unfortunately not ex- + ¢,(t,) ][ — &;(ts) + 1+ 3¢;(t,) #i(t3) — 2¢(t,)] and can-
tend to nonzerqu. To get theu-expansion we make re- not be expressed as a product of four factors, each of which
peated uses of the leftmost identity in E@2). As (9#0 would be associated to a tinte. We shall say thaD’ is
:(9#\7:0, this amounts to inseti operatorsone for each gntangled, here due to thg t; term. Insertion of at least one
power of u) in the CFs, yielding contributions of the form U, betweent, andts, as in

T T T -
D= fo ‘“lfo dtz- - fo dtn--o{i(t) D":=(Bi(t)U,(t) U;(ty) - Uyt ) Bi(t) Uyt . )
x0i(t)Ui(ta)- - - Uiltar ) Biltns2)).  (44) x Uity 22 Uity ) it Uity 1)
As stated in Sec. IIB3, su'ch a term vanishes if one of the Xoi(tr,12+2)' _ 'Oi(tﬁs)?ﬁi(u))
timest,,ts, ... ty.1 associated to th& operators is the
minimum or maximum of all times. If not, the integrand is
the product of factors with
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! ! ! ’ ! !
t1<t1<---<tn1§t2<tn1+l<~ . '<”t(12<t3<tn2+1<' <ty F::JTdth’tndtn,l' N ftzdtlp
<t, removes this entanglemem! is the product of factors 0 0 0
&(t}), one for eacHJ(t;), and of the disentangledactor-

ized) expression— ¢;(ty)[ — 1+ ¢;(t) ][~ 1+2¢(tz) ][~ 1 Xex’{iljtzdtg(tﬁ"'ﬂnﬁn th(t)), 50
+2¢i(ts)]. We conclude that a CF of the type g fn-1

T T T T T T T whereP is a polynomial ing(tq), exd—¢ ()], . . . .o(tn)
D'r;:=f dt“f dtaf dtzf dtlf dtif dts- - f dt;, and exp—(t)]andiq, i,, . .. i, are positive integers. The
0 0 0 0 0 0 0 presence of the memory kernels ensures that the integrand
~ ~ ~ ~ N N - sharply decreases &s—t, increases.
X(bi(t) di(t2) di(ts) i(ta)Ui(t) Ui(ta) - - Uilty)) Oﬁg may Wonde&rﬁwh)l/ memory kernels appear in the ex-
(47)  pressions above, whereas CP is a Markovian stochastic pro-
cess. This is the consequence of the projection of the com-
plete distribution of state$P(t)), that is, the knowledge of
can be expressed as the probability of occupation or vacancy of all sites, onto a
partial description where we keep track of the order param-
etersé(t), ¥(t) only. Beyond mean field, the degrees of free-
v T b t3 o~ ~ dom which were discarded pop up as non-Markovian contri-
D“_24L dt“Jo dt3f0 dtZJO dty(i(t) i(t2) butions to the dynamical evolution of the order parameters.
This phenomenon is well known, and can be illustrated with
an elementary example proposed in the Appendix.

~ ~ | R— n
X¢i(t3)¢i(t4)>dis(£ dt§i(t))

T ty t3 to B. Results and comparison with simulations
+24| dt,| dtz| dt, | dty ) . ) )
0 0 0 0 Following the above recipes, the effective poteniiahay

- - - - be expanded in powers ofZ/see Eq.(43). The explicit
X[ #i(t1) pi(t2) di(tz) dits)) expression for the first correction to mean field, coming from

~ ~ ~ ~ the two-site loop diagram, reads
—(@i(t1) di(t2) di(ts) di(ts))aisl

N2 (T t2
. 771:—7[0 dtz[l—¢(t2)]2(e‘¢“2)—1)f0 dt; ¢(ty)

t, ty n
At () + f dtam) | 49
tg t3

t
X{[1—¢(ty)]e” W+ ¢<t1>}exp(2 f Zdt”f(t”)).
where the “dis” subscript means that the disentangled ex- g
pression for the CF integrand--) must be taken. (51
It appears that, at any given orderinthe series expan-
sion in powers ofu can be easily summed up, yielding
memory kernels in the resulting 4(x) with a=2. For in- The 0O(1/2%) correcti&ns)tm-r required the calculation of the
Tt (THt /0 (N TS (47N i ; diagrams listed in Eq43). The resulting expressions,, for
stanceodt/odt'(¢i(1) $(1")) is replaced with the D-dimensional hypercubic latticevhere z= 2D) is too
lengthy to be given here, but can be obtained with the help of
un T T a computer algebra software. This gives, as a by-product, the
> —an=f dtJ dt’ (¢ (1) bi(t))) expressionr, for the Cayley latticginfinite graph without
n=2 N o Jo loops where all sites have exactyieighbor$ after removal
maxt) of the square dia_gr:_:trfﬂ_{(. _ _
><exp< ,uf _ dt”fi(t”)>, (49 Functional optimization of the resulting expression for
mint,t") with respect tog(t) and ¢(t) yields EMs which include
corrections of orders 2/and 1#2 to the Hamilton-Jacobi
equations(34). These corrections involve terms with mul-

the memory kernel being the exponential term, wheres Eple integrals on the time

eventually set to 1. Due to the presence of the kernel, the C
between two operators at timeandt’ decreases with a time
difference|t—t’| (rememberE<0).

This property extends to more than two operators. The
contribution of a diagram with links, thus of ordei" in the We first concentrate on the solution to the EM with van-
\-expansion ofll, may be written as the sum of a finite ishing ¢(t) at all timest. The equation forp(t) then simpli-
number of terms of the form fies; for instance, to the first order inzl/we obtain

1. Corrections to the densitp* of particles and the critical
parameteri ¢
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do 1) 2\2 more precise estimates far., e.g., for hypercubic lattices
e —7\¢(t)( d(t)—1+ X) - 7[1—¢(t)]2 in 1<D<5 Ref.[46], for D=1 through series expansions
Refs.[47,48.
¢ ¢ dt Our values ofp* are in good agreement with numerical
j dt’ o(t )exp( J ) (520  simulations carried out on hypercubic lattices in dimensions
1-¢(t") up to D=10 for several values ok(=1.5,2,3. Simulating
i large size lattices in higher dimensions would require pro-
With the help of computer algebra, the EM f@(t) can be  hipitive memory space. Instead, we have performed simula-
written up to order 1%, and its asymptotic behavior ana- tions of the conserved contact proceCP [49]. This
lyzed. We find thaip(t— =) equals 0 op* >0 depending on is a canonical counterpart of CP where the number of occu-
the value of the parametarwith respect to its critical value pied sites is kept constant, bitfluctuates. The stationary

Ac. The asymptotic density reads properties of both processes are, in the limit of infinite lattice
size, equivalen{50,51]. In particular, simulating CCP with
1 1  6A%+11\+3 a (not too large numberN of particles on an almost infi-
p*=1- N w2y W+O(1/ZS) (53 nite lattice (in our simulation, of sizeL=25%) amounts to

simulate CP with a vanishing density. The average value of
N\ in CCP then coincides with the criticalc in CP. We
have been able to simulate CCP on hypercubic lattices with
’ up to N=4000 sites and in dimensions up Bb=80 or up
* 1 1 1 6 +1D‘_3+O(1/23) (54) to z=81 on the Cayley tred52]. Results are displayed
Z 6472 in Fig. 4, and are in very good agreement with our theoreti-
cal predictions foin ¢, Egs.(55), (56), and previous simula-
on the Cayley tree where all sites hazeneighbors. The tions[46].
critical value ¢ can be easily obtained from the above
equations as the value of the paramekebelow which 2. Corrections to the distribution of particle densities
no state with a finite density of particles can survive. This is  The analytical resolution of the EM whef(t)# 0 is dif-
intended to be the lower critical valuez,  _ on the Cayley ficult. We have restricted ourselves to a first order im 1/
tree [13(b)], where there exists an intermediate rangeexpansion around the infinite lifetime solutions for which we
[\ Clower')\c .1 of values of\ where nonuniform metastable have an analytical expression in the mean-field case. It is

states can survive without invading the whole graph whileconvenient to parametrize the real timé terms ofy, in-
abovenc . there is a single uniform metastable state—ontroduced in Eq.(35): yo=exyq(t)], where yq(t) is the

hypercublc Iattlces both thresholds coincide. SetpfgO0, mean-field expression fag(t). In the thermodynamic limit
we obtain N—co with E—0 (infinite lifetime), thet— + oo limit trans-

lates into theyg— X\ limit.
1 7 In this setting, we may writeb(Yo) = do(Yo) + d1(Yo)/z
Ne=1++—+0(1/2%) (550 +0(1/z2%) and similarly ¥ (yo) = to(Yo) + 1(Yo)/z
Z 3z +0(1/z%), where ¢, and ¢, were computed previously for
the mean-field case. From the EM, we derive two coupled
first-order linear differential equations fef; and ¢:

on theD-dimensional hypercubic lattice€2D), and

on a the hypercubic lattice, and

1 4
Ne=1+-+ — T0(1/2% (56) $1(Yo)
32 (Yo~ (A - YO)d
Yo\ #1(Yo)
on the Cayley tree. These results are compatible with the —y
rigorous bounds[1—1/(2D)] *<\.<4 (hypercubic lat- 1 —(Yo— D> A+1 —2(\—yo)(yo+1)
tice) and 1=<\o<(1-2/2) ! (on the Cayley tree[13]. No- = Vo A
tice that the lower boundlc=[1—1/(2D)] ! was obtained 2N (yo—1) (Yo—1)2+N—1
[13(a)] through a two-site calculation. When discarding all
diagrams but the two-site loops, we fing.=1+1/(2D) x $1(Yo) +B(y,) (57)
+1/(2D)?+ O(1/(2D)?3), that is, the same bound. For small 1(Yo)
dimensions, our asymptotic results are of poor quality. We
refer the interested reader to the various works that givavith
|
N[ =yol 1+ (A =Yg)l 2+ 2\14l5]
B = A 2 58
(¥o) 1[2(y0—1)|1+ — —2(A+1-yp) |2+—|1|2} 8
Yo Yo
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FIG. 4. Numerical data for the second-order correction int@/\-(z) for the Cayley tredleft pane) and the hypercubic latticgight
pane). The critical value\ . is obtained from numerical experiments on the conserved contact pi@fBs see main text. Data are plotted
asz’[\c(z) — 1—1/z] vs 1k. The intercept with the vertical axis £— ) compares very well with the theoretical predictians 4/3 [Eq.
(56), left] and 7/3[Eq. (55), right]. Dashed lines are tentative linear fitgith fixed origin at 12=0) of the data, whose slopes should be
given by theO(1/z°) expansion. The estimate affor eachz was obtained through an extrapolation of data for finite numbers of particles
N (up to 4000 to infinite N. For each value oN, we ran 10 000 simulations and estimated error bars from the statistical fluctuations. The
upper and lower values &f-(z;N=x) were then obtained through a linear fit\af(z; 1/N), and plotted at the extremities of the error bars.

and we restricted ourselves to the casel+2/a with « a posi-
wio iz tive integer, where these hypergeometric functions reduce to
. N—Yo jyod Atl-y;(y;—1 59 polynomials and logarithms.
lye—1 1 Y1 yi—1 \A—y; ' This perturbative resolution yields a parametric represen-
tation of the large deviation distributions™ (p) = mye(p)
| (yo— 1) “*Zde Vi ()\—yl) at2 (60) + 7} (p)/z+ O(L/z%) with parametey,. More precisely, we
2° '

A=y Yo yl)\_—)/l y1—1 have
where « is defined byh=:1+2/a. The solutions of these p(Yo) :=b(Yo) = do(Yo) + $1(¥o) +0(1/2%),
equations diverge inyo=1 for all initial conditions on z
é1,01 In yo=1 except forp,(1)=—1/(2\?), 4,(1)=0 X

which precisely amounts to setting(yo=1)=0 and ¢(yq
=1)=p* up to order 1#2. We choose these initial condi-
tions in the following.

The resolution of the equations fgr, andy; can be done  WhereSy(yo) =Inyo—(yo—1)/\ and
in part analytically and in part numerically. First, we treat the
neighborhood ofy, to characterize exactly thénondiver-
gend singularity in this point. We have calculated the solu-
tions up to the ordery,— 1)3Inly,—1| included, which is
sufficient to obtain the values ofp1(1+¢€),¥1(1+¢€) Jyl ANt1-yy(y,—1
slightly off (below or abovgthe singularity(with e=+0.001 x 2 y,—1 (A—y,
to 0.003 with a good numerical accuracy. Such an expansion
amounts to a short-time expansion if one starts=ad from  The resulting curves fot™* (p) are presented in Fig. 2. Apart
the typical state where the density of full sitespisandy  from 7*(p*)=0 given by Eqs(53) and(54) and reached for
=1. Then, we start to solve the differential equations fromy,=1, another point of interest may be located analytically,
the valueyy=1+¢€ using a Runge-Kutta-Fehlberg proce- namely 7* (p=0), reached fory,=\. This is related to the
dure. Note that the coefficients of the EM fg¢r and i, are  lifetime of the metastable state,  .~exd —N#*(p=0)].
rather simple, but the nonvanishing second member involves§Some values are listed in Table Il for integer
for generic values ok, hypergeometric functions. To sim- To check the accuracy of our perturbative expansion
plify the numerical resolution and to make it more precisefor #*, we have performed simulations of CP on six-

A
m(Yo)=p INYo—Se(Yo) — ?51(YO) +0(1/z%), (61

1 (Yo V1
Si(Yo)=— FL dY1—(

)\_yl) a+2
A=Yy

yi—1

a+2
) . (62
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TABLE Il. Some analytical values for the ZEexpansion ofm(p=0), the logarithm of the probability of
reaching a configuration with vanishing density in the metastable state of the CP on a regular graph of
coordination numbee. Analytical calculation can be performed for valueshaf1+2/a with « a positive
integer only, butm(p=0) can be numerically estimated to order fér other values of.

N (p=0) Decimal approximation
3 —In 3+2/3+ (—53/18+ 72/3)/z —0.432+0.345¢
2 —In2+1/2+ (—107/36+ 7?/3)/z —0.193+0.318¢2
5/3 —In(5/3)+ 2/5+ (— 5413/1806- 72/3) /2 —0.111+0.283%
32 —In(3/2)+ 1/3+ (— 1823/600- 7%/3)/z —0.072+0.252¢
7/5 —In(7/5)+ 2/7+ (— 270281/88208 72/3)/z —0.051+0.225¢

dimensional hypercubic lattices with periodic boundary con-more generally, the whole distribution of densities in the out-
ditions. SizesN=L® with L ranging from 3 to 6 are large of-equilibrium metastable state of CP.

enough that the system gets trapped for a time greater than While the use of a quantum formalism was known to be
the simulation run into the metastable state. We simulated theery efficient to access universal quantities, e.g., the decay
system starting fronp<<p* or p>p* until it reached equilib- exponent of the density with time at criticality, the present
rium. The equilibration timegexpressed as the number of study shows that nonuniversal quantities can be calculated
elementary stepswas found to correspond to continuous too. We hope that this approach will turn out to be useful to
times[53] t¢q ranging from 25 to 60. Then we run again the the analysis of the numerous far-from-equilibrium systems
simulation for timest=Mt,, with very large values oM  encountered in physics or related fields. From this point of
going from M=2.5x10° for L=6 to M=5x10" for L view, a remote but promising field of applications could be
=3, and recorded the histogram @bver this time interval. the analysis of algorithms in computer science where out-of-
This gives a very good approximation of the quasistationaryequilibrium dynamics ovefdiscrete variables abound, and
distribution 7* since the system was already equilibrated.metastability phenomena are presgst,55. Hopefully our
Numerical results form*(p) are presented in Fig. 5. The e L RN
maximum of 7*(p) vanishes in the thermodynamic limit ofr ;
only, and the valug* at which this maximum is reached is

. . . . . . —-—-- L=3 N
also subject to finite-size corrections. To make the compari- g it
son easier, we have vertically and horizontally shifted the V4 \
experimental curves so that they all reach zero at the sam o —— L6 X

value ofp. Once this translation was done, the numerical and
theoretical curves are in very good agreement, and are easil ~ ~0-0!
distinguishable from the mean-field cun{&ig. 5. This
shows that the curvatur@inaffected by the translationsf X
7 (p) and, hence, the amplitude of the fluctuations in the &
metastable state and its lifetime, is correctly predicted by our
1/z calculation.

=
[
-~
o
[T S N S TR |

1/D correction  \ \

----- — mean—field iR

(p)

LIS L N B N L B B B B B
=

-0.02
V. CONCLUSION

I

In this paper, we have calculated the out-of-equilibrium ,
distribution of densities of particles in the contact process on [ e e e T T s o5 )
large regular lattices with degreeusing a quantum field- e
theoretic formulation for the evolution operator. The calcula- 03 0.4 05 0.6
tion is based on a perturbative calculation of the effective P
potential for the density(t) and an instantonic fielg(t) as
function of timet. Interestingly, this instantonic field natu-
rally emerges from the parametrization of the quantum har

; inal
bosonic (or spins3) states needed to represent the sets o inear sized =3, 4, and 6. All curves were horizontally and verti-

occupation numbers. _ _ cally translated so that their maxima have the same coordinates
The finite connectivity corrections to the mean-field Cas€x ~*x—0. Due to the relatively high dimensionality of these sys-

(z=) lead to the appearance of memory kernels compenems, the range of values pf explored during the simulations is
sating the loss of information due to the tracking with time yery concentrated arounst unlessL is small. Note that the curves

of global fields ¢(t),#(t) only. Though calculations may for different lattice sizes, once translated, seem to depend only
rapidly become involved, we have been able to show theveakly onL. Inset: enlargement of the top region; data compare
very good agreement of the predictions they give with nu-well with the 1D theoretical result(continuous ling and are
merical experiments on the average density of particles andjearly distinct from the mean-field restlashed-dotted line

FIG. 5. Comparison, fob =6 and\=2, between the I pre-
ictions for the large deviation functios* (p) and numerical results
or CP on hypercubic lattices with periodic boundary conditions of
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approach will also permit to complete the average-case dx

analysis of backtracking algorithms initiated in Rd6,57] i (D= —xO+By(V), (A1)

through the systematic control of the non-Markovian effects

ignored so faf58]. g
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dx o,
GrD=—x(+pB e (= (t"). (A3)

APPENDIX: EMERGENCE OF MEMORY KERNEL

WITH HIDDEN DEGREES OF FREEDOM As a result of the existence of a hidden degree of freegiom

the effective equation oxis not Markovian wher8+0, and
Consider two variableg(t),y(t) obeying the Markovian includes a memory kernel whose time constant is that of the
evolution equations y variable.
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